cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321449 Regular triangle read by rows where T(n,k) is the number of twice-partitions of n with a combined total of k parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 5, 5, 0, 1, 4, 8, 8, 7, 0, 1, 6, 13, 19, 16, 11, 0, 1, 6, 17, 27, 32, 24, 15, 0, 1, 8, 24, 47, 61, 62, 41, 22, 0, 1, 8, 30, 63, 99, 111, 100, 61, 30, 0, 1, 10, 38, 94, 158, 209, 210, 170, 95, 42, 0, 1, 10, 45, 119, 229, 328, 382, 348, 259, 136, 56
Offset: 0

Views

Author

Gus Wiseman, Nov 10 2018

Keywords

Comments

A twice partition of n (A063834) is a choice of an integer partition of each part in an integer partition of n.

Examples

			Triangle begins:
   1
   0   1
   0   1   2
   0   1   2   3
   0   1   4   5   5
   0   1   4   8   8   7
   0   1   6  13  19  16  11
   0   1   6  17  27  32  24  15
   0   1   8  24  47  61  62  41  22
   0   1   8  30  63  99 111 100  61  30
The sixth row {0, 1, 6, 13, 19, 16, 11} counts the following twice-partitions:
  (6)  (33)    (222)      (2211)        (21111)          (111111)
       (42)    (321)      (3111)        (1111)(2)        (111)(111)
       (51)    (411)      (111)(3)      (111)(21)        (1111)(11)
       (3)(3)  (21)(3)    (211)(2)      (21)(111)        (11111)(1)
       (4)(2)  (22)(2)    (21)(21)      (211)(11)        (11)(11)(11)
       (5)(1)  (31)(2)    (22)(11)      (2111)(1)        (111)(11)(1)
               (3)(21)    (221)(1)      (11)(11)(2)      (1111)(1)(1)
               (32)(1)    (3)(111)      (111)(2)(1)      (11)(11)(1)(1)
               (4)(11)    (31)(11)      (11)(2)(11)      (111)(1)(1)(1)
               (41)(1)    (311)(1)      (2)(11)(11)      (11)(1)(1)(1)(1)
               (2)(2)(2)  (11)(2)(2)    (21)(11)(1)      (1)(1)(1)(1)(1)(1)
               (3)(2)(1)  (2)(11)(2)    (211)(1)(1)
               (4)(1)(1)  (21)(2)(1)    (11)(2)(1)(1)
                          (2)(2)(11)    (2)(11)(1)(1)
                          (22)(1)(1)    (21)(1)(1)(1)
                          (3)(11)(1)    (2)(1)(1)(1)(1)
                          (31)(1)(1)
                          (2)(2)(1)(1)
                          (3)(1)(1)(1)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          g(n, i-1)+ `if`(i>n, 0, expand(g(n-i, i)*x)))
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
          b(n, i-1)+ `if`(i>n, 0, expand(b(n-i, i)*g(i$2))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 11 2018
  • Mathematica
    Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],Length[Join@@#]==k&],{ptn,IntegerPartitions[n]}]],{n,0,10},{k,0,n}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, x^n,
         g[n, i - 1] + If[i > n, 0, Expand[g[n - i, i]*x]]];
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n,
         b[n, i - 1] + If[i > n, 0, Expand[b[n - i, i]*g[i, i]]]];
    T[n_] := CoefficientList[b[n, n], x];
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - x^n * (Sum_{0 <= k <= n} A008284(n,k) * t^k)).