cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321456 Numbers k that are divisible by sum(pi)^2+sum(ei) where k=p1^e1*...*pj^ej with pi primes.

Original entry on oeis.org

16, 192, 288, 704, 1470, 2112, 2160, 3168, 3240, 3872, 4096, 4608, 4752, 4860, 5400, 6912, 7128, 7245, 8100, 9295, 10368, 11616, 13500, 15552, 15900, 17424, 21296, 23328, 23850, 26136, 27720, 32830, 34992, 35960, 39600, 39750, 41536, 45584, 52250, 52488, 59400, 62920, 63888, 67200, 78732, 81920, 86430
Offset: 1

Views

Author

Pierandrea Formusa, Nov 18 2018

Keywords

Comments

Numbers k that are divisible by A001222(k)+A235323(k).

Examples

			704 is an item as its prime factorization is 2^6+11^1, sum(pi)=2+11=13, sum(e1)=6+1=7, sum(pi)^2+sum(e1)=13^2+7=169+7=176, finally 704=c*176 for c=4.
		

Crossrefs

Programs

  • Mathematica
    fun[n_] := Module[{f = FactorInteger[n]}, Total@f[[;;, 1]]^2 + Total@f[[;;, 2]]]; aQ[n_] := Divisible[n, fun[n]]; Select[Range[100000], aQ] (* Amiram Eldar, Nov 18 2018 *)
  • PARI
    ok(k)={my(f=factor(k)); k > 1 && k % (vecsum(f[,2]) + vecsum(f[,1])^2) == 0} \\ Andrew Howroyd, Nov 19 2018
  • Python
    from sympy.ntheory import factorint, isprime
    n=100000
    r=""
    def calc(n):
        global r
        a=factorint(n)
        lp=[]
        for p in a.keys():
            lp.append(p)
        lexp=[]
        for exp in a.values():
            lexp.append(exp)
        if n%((sum(lp))**2+sum(lexp))==0:
           r += ","
           r += str(n)
        return
    for i in range(4,n):
        calc(i)
    print(r[1:])