cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321498 Numbers which can be written in at least two ways in the form (x-y)*(x^2-y^2) with x > y > 0.

Original entry on oeis.org

45, 63, 81, 96, 99, 117, 128, 135, 153, 160, 171, 175, 189, 192, 207, 224, 225, 243, 256, 261, 275, 279, 288, 297, 315, 320, 325, 333, 351, 352, 360, 369, 375, 384, 387, 405, 416, 423, 425, 432, 441, 448, 459, 475, 477, 480, 495, 504, 512, 513, 525, 531, 539, 544, 549, 567, 575, 576, 585
Offset: 1

Views

Author

Geoffrey B. Campbell and M. F. Hasler, Nov 22 2018

Keywords

Comments

An equivalent form is (x - y)^2*(x + y), or d^2*(d + 2y), where d = x - y > 0 and y > 0. See also A321499.

Examples

			   45 = (4 - 1)*(4^2 - 1^2) = (23 - 22)*(23^2 - 22^2),
   63 = (5 - 2)*(5^2 - 2^2) = (32 - 31)*(32^2 - 31^2),
   81 = (6 - 3)*(6^2 - 3^2) = (41 - 40)*(41^2 - 40^2),
   96 = (5 - 1)*(5^2 - 1^2) = (13 - 11)*(13^2 - 11^2),
   99 = (7 - 4)*(7^2 - 4^2) = (50 - 49)*(50^2 - 49^2),
  117 = (8 - 5)*(8^2 - 5^2) = (59 - 58)*(59^2 - 58^2).
		

Crossrefs

Cf. A321499.

Programs

  • Mathematica
    aQ[n_] := Length[Solve[(x-y)*(x^2-y^2) ==n && x > y && y > 0, {x,y}, Integers]] > 1; Select[Range[600], aQ] (* Amiram Eldar, Dec 06 2018 *)
  • PARI
    select( is_A321498(n,c=2)={n&&!issquarefree(n)&&fordiv(n, d, d^2*(d+2)>n && break; n%d^2&&next; bittest(n\d^2-d, 0)||c--||return(1))}, [0..999]) \\ Define the function is_A321498(). \\ ~30% speed up by David A. Corneth, Nov 23 2018
    
  • PARI
    is(n) = {if(issquarefree(n), return(0)); if(n % 2 == 0, if(n % 8 == 0, n\=8, return(0))); f = factor(n); e = select(x -> x > 1, f[, 2], 1); if(#e == 0 || n == 1, return(0), k = e[1]); n > f[k, 1]^3} \\ David A. Corneth, Dec 01 2018