A321510 Primes p for which there exists a prime q < p such that 3*q == 1 (mod p).
5, 7, 19, 43, 61, 79, 109, 151, 163, 223, 271, 349, 421, 439, 523, 601, 613, 631, 673, 691, 811, 853, 919, 991, 1009, 1051, 1063, 1153, 1213, 1231, 1279, 1321, 1429, 1531, 1549, 1663, 1693, 1789, 1801, 1873, 1933, 1951, 2113, 2143, 2179, 2221, 2239, 2503, 2539, 2683, 2791, 2833, 2851
Offset: 1
Keywords
Examples
For p = 11, the only number t < 11 such that 3*t == 1 (mod 11) is t = 4, which is not prime, therefore 11 is not a term. For p = 5, q = 2 (prime); 2*3 = 6 == 1 (mod 5) therefore 5 is a term.
Programs
-
Maple
for n from 3 to 300 do Y := ithprime(n); Z := 1/3 mod Y; if isprime(Z) then print(Y); end if: end do:
-
Mathematica
aQ[p_]:=Module[{ans=False, q=2}, While[q
-
PARI
isok(p) = if (isprime(p), forprime(q=1, p-1, if ((3*q % p) == 1, return (1)))); \\ Michel Marcus, Nov 14 2018
Formula
a(n+1) = A104163(n); n >= 1.
Comments