cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321553 a(n) = Sum_{d|n} (-1)^(n/d+1)*d^8.

Original entry on oeis.org

1, 255, 6562, 65279, 390626, 1673310, 5764802, 16711423, 43053283, 99609630, 214358882, 428360798, 815730722, 1470024510, 2563287812, 4278124287, 6975757442, 10978587165, 16983563042, 25499674654, 37828630724, 54661514910, 78310985282, 109660357726, 152588281251, 208011334110, 282472589764
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Crossrefs

Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Cf. A013667.

Programs

  • Mathematica
    Table[Total[(-1)^(n/#+1) #^8&/@Divisors[n]],{n,30}] (* Harvey P. Dale, May 05 2021 *)
    f[p_, e_] := (p^(8*e + 8) - 1)/(p^8 - 1); f[2, e_] := (127*2^(8*e + 1) + 1)/255; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    apply( A321553(n)=sumdiv(n, d, (-1)^(n\d-1)*d^8), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^8*x^k/(1 + x^k). - Seiichi Manyama, Nov 23 2018
From Amiram Eldar, Nov 11 2022: (Start)
Multiplicative with a(2^e) = (127*2^(8*e+1)+1)/255, and a(p^e) = (p^(8*e+8) - 1)/(p^8 - 1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^9, where c = 85*zeta(9)/768 = 0.110899... . (End)