cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A321446 Number of (0,1)-matrices with n ones, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 2, 10, 72, 624, 6522, 80178, 1129368, 17917032, 316108752, 6138887616, 130120838400, 2989026225696, 73964789192400, 1961487062520720, 55495429438186920, 1668498596700706440, 53122020640948010640, 1785467619718933936560, 63175132023953553400440
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Examples

			The a(3) = 10 matrices:
  [1 1] [1 1] [1 0] [0 1]
  [1 0] [0 1] [1 1] [1 1]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[Subsets[Tuples[Range[n],2],{n}],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,6}]
  • PARI
    \\ Q(m, n, wf) defined in A321588.
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1 + y^w + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ Andrew Howroyd, Jan 24 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 20 2024

A321515 Number of nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 3, 19, 137, 1209, 12899, 160395, 2276229, 36323217, 643848837, 12551081501, 266868756473, 6146455542737, 152439235077709, 4050427673024753, 114791270281213209, 3456412742412516649, 110191808168628510207, 3708004806262196242699, 131339701217968663631857
Offset: 0

Views

Author

Gus Wiseman, Nov 13 2018

Keywords

Examples

			The a(3) = 19 matrices:
  [3] [2 1] [1 2]
.
  [2] [2 0] [1 1] [1 1] [1] [1 0] [1 0] [0 2] [0 1] [0 1]
  [1] [0 1] [1 0] [0 1] [2] [1 1] [0 2] [1 0] [2 0] [1 1]
.
  [1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
  [0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
  [0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@prs2mat[#],UnsameQ@@Transpose[prs2mat[#]]]&]],{n,5}]
  • PARI
    \\ Q(m,n,wf) defined in A321588.
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1/(1 - y^w) + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(R)))} \\ Andrew Howroyd, Jan 24 2024

Extensions

a(7) onwards from Andrew Howroyd, Jan 20 2024

A369285 Number of connected binary matrices with n ones, no zero rows or columns, and distinct rows and columns.

Original entry on oeis.org

1, 1, 0, 4, 12, 72, 522, 4386, 42360, 465792, 5697552, 77229216, 1145762400, 18485254536, 322206163200, 6033964218720, 120830927523240, 2576515514434920, 58285369894027440, 1394212928447354640, 35160926971256369400, 932396530226753051160, 25936228654879236020640
Offset: 0

Views

Author

Andrew Howroyd, Jan 24 2024

Keywords

Examples

			The a(3) = 4 matrices:
  [1 1] [1 1] [1 0] [0 1]
  [1 0] [0 1] [1 1] [1 1]
		

Crossrefs

Programs

  • PARI
    \\ Q, ConnectedMats defined in A321588.
    seq(n)={my(R=vectorv(n,m,Q(m,n,w->1 + y^w + O(y*y^n)))); for(i=2, #R, R[i] -= i*R[i-1]); Vec(1 + vecsum(vecsum(Vec(ConnectedMats(Mat(R))))))}
Showing 1-3 of 3 results.