A321610 Number of permutations tau of {1,...,n} such that k^2 + tau(k)^2 is prime for every k = 1,...,n.
1, 1, 1, 1, 1, 4, 0, 16, 4, 144, 64, 81, 256, 5184, 1600, 25600, 8100, 183184, 108900, 5924356, 342225, 9066121, 11356900, 106853569, 105698961, 16119349444, 1419933124, 69792129124, 14251584400, 613950602500, 304388337796, 25042678198756, 10080904401936, 1179245283899881, 1045903153861476, 31082438574307129
Offset: 1
Examples
a(3) = 1, and (1,3,2) is a permutation of {1,2,3} with 1^2 + 1^2 = 2, 2^2 + 3^2 = 13 and 3^2 + 2^2 all prime. a(5) = 1, and (1,3,2,5,4) is a permutation of {1,2,3,4,5} with 1^2 + 1^2 = 2, 2^2 + 3^2 = 13, 3^2 + 2^2 = 13, 4^2 + 5^2 = 41 and 5^2 + 4^2 = 41 all prime.
Links
- Zhi-Wei Sun, Primes arising from permutations (II), Question 315341 on Mathoverflow, Nov. 14, 2018.
- Zhi-Wei Sun, A mysterious connection between primes and squares, Question 315351 on Mathoverflow, Nov. 15, 2018.
Programs
-
Mathematica
V[n_]:=V[n]=Permutations[Table[i,{i,1,n}]] Do[r=0;Do[Do[If[PrimeQ[i^2+Part[V[n],k][[i]]^2]==False,Goto[aa]],{i,1,n}];r=r+1;Label[aa],{k,1,n!}];Print[n," ",r],{n,1,11}]
-
PARI
a(n) = matpermanent(matrix(n, n, i, j, ispseudoprime(i^2 + j^2))); \\ Jinyuan Wang, Jun 13 2020
Extensions
a(12)-a(25) from Jud McCranie, Nov 15 2018
a(26)-a(28) from Jud McCranie, Nov 19 2018
a(29)-a(30) from Jinyuan Wang, Jun 13 2020
a(31)-a(36) from Vaclav Kotesovec, Aug 19 2021
Comments