A321671 Primes of the form 2^j - 3^k, for j >= 0, k >= 0.
3, 5, 7, 13, 23, 29, 31, 37, 47, 61, 101, 127, 229, 269, 431, 503, 509, 997, 1021, 1319, 2039, 3853, 4093, 7949, 8111, 8191, 14197, 16141, 16381, 32687, 45853, 65293, 130343, 130829, 131063, 131071, 347141, 502829, 524261, 524287, 1028893, 1046389, 1048549
Offset: 1
Keywords
Examples
7 = 2^3 - 3^0, so 7 is a term.
Links
- H. Gauchman and I. Rosenholtz (Proposers), R. Martin (Solver), Difference of prime powers, Problem 1404, Math. Mag., 65 (No. 4, 1992), 265; Solution, Math. Mag., 66 (No. 4, 1993), 269.
Programs
-
PARI
forprime(p=1,1000,k=0;x=2;y=1;while(k
Extensions
More terms from Alois P. Heinz, Nov 16 2018
Comments