A321682 Numbers with distinct digits in factorial base.
0, 1, 2, 4, 5, 10, 13, 14, 19, 20, 22, 23, 46, 67, 68, 77, 82, 85, 86, 101, 106, 109, 110, 115, 116, 118, 119, 238, 355, 356, 461, 466, 469, 470, 503, 526, 547, 548, 557, 562, 565, 566, 623, 646, 667, 668, 677, 682, 685, 686, 701, 706, 709, 710, 715, 716, 718
Offset: 1
Examples
The first terms, alongside the corresponding factorial base representations, are: n a(n) fac(a(n)) -- ---- --------- 1 0 (0) 2 1 (1) 3 2 (1,0) 4 4 (2,0) 5 5 (2,1) 6 10 (1,2,0) 7 13 (2,0,1) 8 14 (2,1,0) 9 19 (3,0,1) 10 20 (3,1,0) 11 22 (3,2,0) 12 23 (3,2,1) 13 46 (1,3,2,0) 14 67 (2,3,0,1)
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8179 (terms up to 13!)
- Index entries for sequences related to factorial base representation.
Programs
-
Maple
b:= proc(n, i) local r; `if`(n (l-> is(nops(l)=nops({l[]})))(b(n, 2)): select(t, [$0..1000])[]; # Alois P. Heinz, Nov 16 2018
-
Mathematica
q[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; UnsameQ @@ s]; Select[Range[0, 720], q] (* Amiram Eldar, Feb 21 2024 *)
-
PARI
is(n) = my (s=0); for (k=2, oo, if (n==0, return (1)); my (d=n%k); if (bittest(s,d), return (0), s+=2^d; n\=k))
Comments