cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321714 Numbers k such that lambda(k) = 12.

Original entry on oeis.org

13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 144, 156, 180, 182, 195, 208, 210, 234, 260, 273, 280, 312, 315, 336, 360, 364, 390, 420, 455, 468, 520, 546, 560, 585, 624, 630, 720, 728, 780, 819, 840, 910, 936, 1008, 1040, 1092, 1170, 1260, 1365, 1456, 1560, 1638, 1680, 1820, 1872, 2184, 2340, 2520, 2730, 3120, 3276, 3640, 4095, 4368, 4680, 5040, 5460, 6552, 7280, 8190, 9360, 10920, 13104, 16380, 21840, 32760, 65520
Offset: 1

Views

Author

Gheorghe Coserea, Feb 21 2019

Keywords

Comments

Here lambda is Carmichael's lambda function (see A002322).

Crossrefs

Programs

  • Mathematica
    Select[Range[65520], CarmichaelLambda[#] == 12 &] (* Paolo Xausa, Feb 28 2024 *)
  • PARI
    lambda(n) = { \\ A002322
      my(f=factor(n), fsz=matsize(f)[1]);
      lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
          if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    invlambda(n) = { \\ A270562
      if (n <= 0, return(0), n==1, return(2), n%2, return(0));
      my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
      for (k=1, fsz, my(p=f[k,1], e=1);
        while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
      fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
      g *= h; if (lambda(g) != n, 0, g);
    };
    lambda_level(n) = {
      my(N = invlambda(n)); if (!N, return([])); my(s=List());
      fordiv(N, d, if (lambda(d) == n, listput(s, d)));
      Set(s);
    };
    lambda_level(12)