cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321727 Number of permutations f of {1,...,n} such that prime(k) + prime(f(k)) + 1 is prime for every k = 1,...,n.

Original entry on oeis.org

1, 1, 1, 2, 6, 10, 31, 76, 696, 4294, 5772, 8472, 128064, 147960, 1684788, 26114739, 523452320, 1029877159, 1772807946, 28736761941, 19795838613, 31445106424, 1313504660737, 54477761675626, 105122845176663, 2200119900732333, 2761739099984389, 83123428119278837, 219734505495953342, 7228968492870136475, 13623311188546432233, 625620139149376861330, 18603738861035365389401, 64952397216275572992159, 3115094155636931821691880, 4788927142804364353625983
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 17 2018

Keywords

Comments

Clearly, a(n) is also the permanent of the matrix of order n whose (i,j)-entry is 1 or 0 according as prime(i) + prime(j) + 1 is prime or not.
Conjecture: a(n) > 0 for all n > 0.
Note that there is no permutation f of {1,...,10} such that prime(k) + prime(f(k)) - 1 is prime for every k = 1,...,10.

Examples

			a(3) = 1, and (1,2,3) is a permutation of {1,2,3} with prime(1) + prime(1) + 1 = 5, prime(2) + prime(2) + 1 = 7 and prime(3) + prime(3) + 1 = 11 all prime.
a(4) = 2. In fact, (1,2,4,3) is a permutation of {1,2,3,4} with prime(1) + prime(1) + 1 = 5, prime(2) + prime(2) + 1 = 7, prime(3) + prime(4) + 1 = 13 and prime(4) + prime(3) + 1 = 13 all prime; also (1,4,3,2) is a permutation of {1,2,3,4} with prime(1) + prime(1) + 1 = 5, prime(2) + prime(4) + 1 = 11, prime(3) + prime(3) + 1 = 11 and prime(4) + prime(2) + 1 = 11 all prime.
		

Crossrefs

Programs

  • Maple
    b:= proc(s) option remember; (k-> `if`(k=0, 1, add(`if`(isprime(
          ithprime(i)+ithprime(k)+1), b(s minus {i}), 0), i=s)))(nops(s))
        end:
    a:= n-> b({$1..n}):
    seq(a(n), n=1..15);  # Alois P. Heinz, Nov 17 2018
  • Mathematica
    p[n_]:=p[n]=Prime[n];
    a[n_]:=a[n]=Permanent[Table[Boole[PrimeQ[p[i]+p[j]+1]],{i,1,n},{j,1,n}]];
    Do[Print[n," ",a[n]],{n,1,22}]
  • PARI
    a(n) = matpermanent(matrix(n, n, i, j, ispseudoprime(prime(i)+prime(j)+1))); \\ Jinyuan Wang, Jun 13 2020

Extensions

a(23)-a(26) from Alois P. Heinz, Nov 17 2018
a(27)-a(28) from Jinyuan Wang, Jun 13 2020
a(29)-a(36) from Vaclav Kotesovec, Aug 19 2021