A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 6, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 7, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 1 2 1 1 1 1 2 3 1 1 1 1 1 1 3 6 1 3 2 4 6 1 2 2 3 4 1 1 1 1 1 1 1 1 4 3 7 12 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3 4 5 1 2 3 5 4 7 10 1 6 4 12 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 5 11 8 18 30 For example, row 12 gives: h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111).
Links
- Wikipedia, Symmetric polynomial
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],Sort[Length/@#]==primeMS[k]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]
Comments