cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321745 Sum of coefficients of monomial symmetric functions in the homogeneous symmetric function of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 3, 3, 6, 5, 10, 16, 12, 7, 27, 11, 20, 32, 47, 15, 76, 22, 56, 65, 35, 30, 136, 79, 54, 263, 114, 42, 191, 56, 246, 113, 86, 160, 476, 77, 128, 199, 344
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of multiset partitions of a multiset (such as row n of A305936) whose multiplicities are the prime indices of n.

Examples

			The sum of coefficients of h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111) is a(12) = 27.
The a(3) = 2 through a(9) = 16 size-preserving permutations of multiset partitions:
  {11}    {12}    {111}      {112}      {1111}        {123}      {1122}
  {1}{1}  {1}{2}  {1}{11}    {1}{12}    {1}{111}      {1}{23}    {1}{122}
          {2}{1}  {1}{1}{1}  {2}{11}    {11}{11}      {2}{13}    {11}{22}
                             {1}{1}{2}  {1}{1}{11}    {3}{12}    {12}{12}
                             {1}{2}{1}  {1}{1}{1}{1}  {1}{2}{3}  {2}{112}
                             {2}{1}{1}                {1}{3}{2}  {22}{11}
                                                      {2}{1}{3}  {1}{1}{22}
                                                      {2}{3}{1}  {1}{2}{12}
                                                      {3}{1}{2}  {2}{1}{12}
                                                      {3}{2}{1}  {2}{2}{11}
                                                                 {1}{1}{2}{2}
                                                                 {1}{2}{1}{2}
                                                                 {1}{2}{2}{1}
                                                                 {2}{1}{1}{2}
                                                                 {2}{1}{2}{1}
                                                                 {2}{2}{1}{1}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,mps[nrmptn[n]]}],{n,30}]

A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 4, 3, 7, 12, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 3, 5, 11, 8, 18, 30, 1, 3, 4, 8, 7, 13, 20, 1, 4, 7, 18, 13, 33, 60, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of f(v) in e(u), where f is forgotten symmetric functions and e is elementary symmetric functions.

Examples

			Tetrangle begins:
  (1):  1
.
  (2):   1  1
  (11):  1  2
.
  (3):    1  1  1
  (21):   1  2  3
  (111):  1  3  6
.
  (4):     1  1  1  1  1
  (22):    1  3  2  4  6
  (31):    1  2  2  3  4
  (211):   1  4  3  7 12
  (1111):  1  6  4 12 24
.
  (5):      1  1  1  1  1  1  1
  (41):     1  2  2  3  3  4  5
  (32):     1  2  3  5  4  7 10
  (221):    1  3  5 11  8 18 30
  (311):    1  3  4  8  7 13 20
  (2111):   1  4  7 18 13 33 60
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111).
		

Crossrefs

This is a regrouping of the triangle A321744.
Showing 1-2 of 2 results.