A321748 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
1, 1, 2, -1, -1, 1, 3, -3, 1, -3, 5, -2, 4, -2, -4, 4, -1, 1, -2, 1, -2, 3, 2, -4, 1, -4, 2, 7, -7, 2, 5, -5, -5, 5, 5, -5, 1, 4, -4, -7, 10, -3, 6, -6, -6, -3, 2, 6, 12, -9, -6, 6, -1, -5, 9, 5, -7, -9, 9, -2, -5, 5, 11, -11, -8, 10, -2, -1, 1, 2, -3, 1, 7
Offset: 1
Examples
Triangle begins: 1 1 2 -1 -1 1 3 -3 1 -3 5 -2 4 -2 -4 4 -1 1 -2 1 -2 3 2 -4 1 -4 2 7 -7 2 5 -5 -5 5 5 -5 1 4 -4 -7 10 -3 6 -6 -6 -3 2 6 12 -9 -6 6 -1 -5 9 5 -7 -9 9 -2 -5 5 11 -11 -8 10 -2 -1 1 2 -3 1 7 -7 -7 -7 14 7 7 7 -7 -7 -21 14 7 -7 1 5 -7 -11 14 10 -14 3 For example, row 10 gives: m(31) = -4h(4) + 2h(22) + 7h(31) - 7h(211) + 2h(1111).
Links
- Wikipedia, Symmetric polynomial
Comments