A321773 Number of compositions of n into parts with distinct multiplicities and with exactly three parts.
1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3
Examples
From _Gus Wiseman_, Nov 11 2020: (Start) Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are: 111 112 113 114 115 116 117 118 119 121 122 141 133 161 144 181 155 211 131 222 151 224 171 226 191 212 411 223 233 225 244 227 221 232 242 252 262 272 311 313 323 333 334 335 322 332 414 343 344 331 422 441 424 353 511 611 522 433 434 711 442 443 622 515 811 533 551 722 911 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)
Formula
Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^3*(1 + 3*x + 5*x^2) / ((1 - x)^2*(1 + x)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) - a(n-5) for n>7. (End)
Conjecture: a(n) = (3*n-k)/2 where k value has a cycle of 6 starting from n=3 of (7,6,3,10,3,6). - Bill McEachen, Aug 12 2025