A321838 Number of words w of length n such that each letter of the binary alphabet is used at least once and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z.
2, 3, 7, 12, 25, 44, 89, 160, 321, 587, 1175, 2177, 4355, 8150, 16301, 30744, 61489, 116687, 233375, 445093, 890187, 1704793, 3409587, 6552377, 13104755, 25258599, 50517199, 97617059, 195234119, 378098954, 756197909, 1467343304, 2934686609, 5704370759
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..3327
Crossrefs
Column k=2 of A257783.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [0, 2, 3][n], ((25*n^4-130*n^3-17*n^2+810*n-848)*a(n-1) +(2*(50*n^4-485*n^3+1596*n^2-2049*n+820))*a(n-2) -(4*(n-4))*(25*n^3-130*n^2+193*n-76)*a(n-3) )/((25*n^3-205*n^2+528*n-424)*(n+1))) end: seq(a(n), n=2..40);
Formula
a(n) ~ 5 * 2^(n - 3/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 21 2018