A321854 Irregular triangle where T(H(u),H(v)) is the number of ways to partition the Young diagram of u into vertical sections whose sizes are the parts of v, where H is Heinz number.
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 1, 3, 1, 0, 2, 0, 4, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 6, 0, 6, 1, 1, 3, 4, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1 1 0 1 1 1 0 0 1 0 2 1 0 0 0 0 1 1 3 1 0 2 0 4 1 0 0 0 3 1 0 0 0 0 0 0 1 0 2 2 5 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 1 0 0 0 6 0 6 1 1 3 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 10 4 8 1 The 12th row counts the following partitions of the Young diagram of (211) into vertical sections (shown as colorings by positive integers): T(12,7) = 0: . T(12,9) = 2: 1 2 1 2 1 2 2 1 . T(12,10) = 2: 1 2 1 2 2 1 2 1 . T(12,12) = 5: 1 2 1 2 1 2 1 2 1 2 3 2 3 1 3 3 3 2 3 1 . T(12,16) = 1: 1 2 3 4
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; ptnpos[y_]:=Position[Table[1,{#}]&/@y,1]; ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&]; Table[With[{y=Reverse[primeMS[n]]},Table[Length[Select[spsu[ptnverts[y],ptnpos[y]],Sort[Length/@#]==primeMS[k]&]],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]],{n,18}]
Comments