cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A321742 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in e(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 1, 1, 3, 6, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
   1
   1
   0   1
   1   2
   0   0   1
   0   1   3
   0   0   0   0   1
   1   3   6
   0   1   0   2   6
   0   0   0   1   4
   0   0   0   0   0   0   1
   0   2   1   5  12
   0   0   0   0   0   0   0   0   0   0   1
   0   0   0   0   0   1   5
   0   0   0   1   0   3  10
   1   6   4  12  24
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
   0   0   1   5   2  12  30
For example, row 12 gives: e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And[And@@UnsameQ@@@#,Sort[Length/@#]==primeMS[k]]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]

A321912 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 1, 3, 6, 0, 0, 0, 0, 1, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 2, 1, 5, 12, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 0, 0, 1, 5, 2, 12, 30, 0, 0, 0, 2, 1, 7, 20, 0, 1, 3, 12, 7, 27, 60, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of f(v) in h(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):      1
  (11):  1  2
.
  (3):          1
  (21):      1  3
  (111):  1  3  6
.
  (4):                 1
  (22):       1     2  6
  (31):             1  4
  (211):      2  1  5 12
  (1111):  1  6  4 12 24
.
  (5):                        1
  (41):                    1  5
  (32):              1     3 10
  (221):          1  5  2 12 30
  (311):             2  1  7 20
  (2111):      1  3 12  7 27 60
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111).
		

Crossrefs

A321738 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 7, 4, 1, 10, 1, 5, 13, 15, 1, 27, 1, 17, 21, 6, 1, 37, 34, 7, 87, 26, 1, 60, 1, 52, 31, 8, 73, 114, 1, 9, 43, 77, 1, 115, 1, 37, 235, 10, 1, 151, 209, 175, 57, 50, 1, 409, 136, 141, 73, 11, 1, 295, 1, 12, 543, 203, 229, 198, 1, 65, 91
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(12) = 10 partitions of the Young diagram of (211) into vertical sections:
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3     3     2     3     2     1     1     3     2     1
  4     3     3     2     2     3     2     1     1     1
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[With[{y=Reverse[primeMS[n]]},Length[spsu[ptnverts[y],ptnpos[y]]]],{n,30}]

A321737 Number of ways to partition the Young diagram of an integer partition of n into vertical sections.

Original entry on oeis.org

1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(4) = 37 partitions into vertical sections of integer partitions of 4:
  1 2 3 4
.
  1 2 3   1 2 3   1 2 3   1 2 3
  4       3       2       1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3 4   2 3   3 2   1 3   1 2   3 1   2 1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3     3     2     3     2     1     1     3     2     1
  4     3     3     2     2     3     2     1     1     1
.
  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
  2   2   2   2   2   1   1   2   2   2   2   1   1   2   1
  3   3   2   3   2   2   2   1   1   3   2   1   2   1   1
  4   3   3   2   2   3   2   3   2   1   1   2   1   1   1
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[Sum[Length[spsu[ptnverts[y],ptnpos[y]]],{y,IntegerPartitions[n]}],{n,6}]

Extensions

a(11)-a(24) from Ludovic Schwob, Aug 28 2023

A321739 Number of non-isomorphic weight-n set multipartitions (multisets of sets) whose part-sizes are also their vertex-degrees.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 21, 46, 94, 208
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Also the number of (0,1) square matrices up to row and column permutations with n ones and no zero rows or columns, with the same multiset of row sums as of column sums.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 12 set multipartitions:
  {1}  {1}{2}  {2}{12}    {12}{12}      {1}{23}{23}      {12}{13}{23}
               {1}{2}{3}  {1}{1}{23}    {2}{13}{23}      {3}{23}{123}
                          {1}{3}{23}    {3}{3}{123}      {1}{1}{1}{234}
                          {1}{2}{3}{4}  {1}{2}{2}{34}    {1}{1}{24}{34}
                                        {1}{2}{4}{34}    {1}{2}{34}{34}
                                        {1}{2}{3}{4}{5}  {1}{3}{24}{34}
                                                         {1}{4}{4}{234}
                                                         {2}{4}{12}{34}
                                                         {3}{4}{12}{34}
                                                         {1}{2}{3}{3}{45}
                                                         {1}{2}{3}{5}{45}
                                                         {1}{2}{3}{4}{5}{6}
		

Crossrefs

A321752 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in p(u), where H is Heinz number, e is elementary symmetric functions, and p is power sum symmetric functions.

Original entry on oeis.org

1, 1, -2, 1, 0, 1, 3, -3, 1, 0, -2, 1, -4, 2, 4, -4, 1, 0, 0, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 5, -5, -5, 5, 5, -5, 1, 0, 0, 0, -2, 1, -6, 6, 6, 3, -2, -6, -12, 9, 6, -6, 1, 0, -4, 0, 2, 4, -4, 1, 0, 0, -6, 6, 3, -5, 1, 0, 0, 0, 0, 1, 7, -7, -7, -7, 14, 7, 7
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
   1
   1
  -2   1
   0   1
   3  -3   1
   0  -2   1
  -4   2   4  -4   1
   0   0   1
   0   4   0  -4   1
   0   0   3  -3   1
   5  -5  -5   5   5  -5   1
   0   0   0  -2   1
  -6   6   6   3  -2  -6 -12   9   6  -6   1
   0  -4   0   2   4  -4   1
   0   0  -6   6   3  -5   1
   0   0   0   0   1
   7  -7  -7  -7  14   7   7   7  -7  -7 -21  14   7  -7   1
   0   0   0   4   0  -4   1
For example, row 15 gives: p(32) = -6e(32) + 6e(221) + 3e(311) - 5e(2111) + e(11111).
		

Crossrefs

A321914 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, 1, 0, 0, -4, 2, 4, -4, 1, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, -4, 0, 1, 0, 0, 1, 0, 0, 0, 0, 5, -5, -5, 5, 5, -5, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 5, -3, 1, 0, 0, 0, 0, 5, -1, -2, 0, 1, 0, 0, -5, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in f(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):  -2  1
  (11):  1
.
  (3):    3 -3  1
  (21):  -3  1
  (111):  1
.
  (4):    -4  2  4 -4  1
  (22):    2  1 -2
  (31):    4 -2 -1  1
  (211):  -4     1
  (1111):  1
.
  (5):      5 -5 -5  5  5 -5  1
  (41):    -5  1  5 -3 -1  1
  (32):    -5  5 -1  1 -2
  (221):    5 -3  1
  (311):    5 -1 -2     1
  (2111):  -5  1
  (11111):  1
For example, row 14 gives: m(32) = -5e(5) - e(32) + 5e(41) + e(221) - 2e(311).
		

Crossrefs

A321754 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of h(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and h is homogeneous symmetric functions.

Original entry on oeis.org

1, 1, 2, -1, 0, 1, 3, -3, 1, 0, 2, -1, 4, -2, -4, 4, -1, 0, 0, 1, 0, 4, 0, -4, 1, 0, 0, 3, -3, 1, 5, -5, -5, 5, 5, -5, 1, 0, 0, 0, 2, -1, 6, -6, -6, -3, 2, 6, 12, -9, -6, 6, -1, 0, 4, 0, -2, -4, 4, -1, 0, 0, 6, -6, -3, 5, -1, 0, 0, 0, 0, 1, 7, -7, -7, -7, 14
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Up to sign, same as A321752.

Examples

			Triangle begins:
   1
   1
   2  -1
   0   1
   3  -3   1
   0   2  -1
   4  -2  -4   4  -1
   0   0   1
   0   4   0  -4   1
   0   0   3  -3   1
   5  -5  -5   5   5  -5   1
   0   0   0   2  -1
   6  -6  -6  -3   2   6  12  -9  -6   6  -1
   0   4   0  -2  -4   4  -1
   0   0   6  -6  -3   5  -1
   0   0   0   0   1
   7  -7  -7  -7  14   7   7   7  -7  -7 -21  14   7  -7   1
   0   0   0   4   0  -4   1
For example, row 15 gives: p(32) = 6h(32) - 6h(221) - 3h(311) + 5h(2111) - h(11111).
		

Crossrefs

A321744 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in h(u), where H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 6, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 7, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the number of size-preserving permutations of type-v multiset partitions of a multiset whose multiplicities are the parts of u.
Also the coefficient of f(v) in e(u), where e is elementary symmetric functions and f is forgotten symmetric functions.

Examples

			Triangle begins:
   1
   1
   1   1
   1   2
   1   1   1
   1   2   3
   1   1   1   1   1
   1   3   6
   1   3   2   4   6
   1   2   2   3   4
   1   1   1   1   1   1   1
   1   4   3   7  12
   1   1   1   1   1   1   1   1   1   1   1
   1   2   2   3   3   4   5
   1   2   3   5   4   7  10
   1   6   4  12  24
   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
   1   3   5  11   8  18  30
For example, row 12 gives: h(211) = m(4) + 4m(22) + 3m(31) + 7m(211) + 12m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],Sort[Length/@#]==primeMS[k]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]

A321746 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, -4, 2, 4, -4, 1, 1, 0, 0, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, 5, -5, -5, 5, 5, -5, 1, -4, 0, 1, 0, 0, -6, 6, 6, 3, -2, -6, -12, 9, 6, -6, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 1, 0, 0, 0, 0, 7, -7, -7, -7, 14, 7
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in f(u), where h is homogeneous symmetric functions and f is forgotten symmetric functions.

Examples

			Triangle begins:
   1
   1
  -2   1
   1   0
   3  -3   1
  -3   1   0
  -4   2   4  -4   1
   1   0   0
   2   1  -2   0   0
   4  -2  -1   1   0
   5  -5  -5   5   5  -5   1
  -4   0   1   0   0
  -6   6   6   3  -2  -6 -12   9   6  -6   1
  -5   1   5  -3  -1   1   0
  -5   5  -1   1  -2   0   0
   1   0   0   0   0
   7  -7  -7  -7  14   7   7   7  -7  -7 -21  14   7  -7   1
   5  -3   1   0   0   0   0
For example, row 10 gives: m(31) = 4e(4) - 2e(22) - e(31) + e(211).
		

Crossrefs

Showing 1-10 of 10 results.