cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A321742 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of m(v) in e(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 0, 0, 0, 0, 1, 1, 3, 6, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			Triangle begins:
   1
   1
   0   1
   1   2
   0   0   1
   0   1   3
   0   0   0   0   1
   1   3   6
   0   1   0   2   6
   0   0   0   1   4
   0   0   0   0   0   0   1
   0   2   1   5  12
   0   0   0   0   0   0   0   0   0   0   1
   0   0   0   0   0   1   5
   0   0   0   1   0   3  10
   1   6   4  12  24
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
   0   0   1   5   2  12  30
For example, row 12 gives: e(211) = 2m(22) + m(31) + 5m(211) + 12m(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Table[Sum[Times@@Factorial/@Length/@Split[Sort[Length/@mtn,Greater]]/Times@@Factorial/@Length/@Split[mtn],{mtn,Select[mps[nrmptn[n]],And[And@@UnsameQ@@@#,Sort[Length/@#]==primeMS[k]]&]}],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}],{n,18}]

A321912 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 1, 3, 6, 0, 0, 0, 0, 1, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 2, 1, 5, 12, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 0, 0, 1, 5, 2, 12, 30, 0, 0, 0, 2, 1, 7, 20, 0, 1, 3, 12, 7, 27, 60, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of f(v) in h(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):      1
  (11):  1  2
.
  (3):          1
  (21):      1  3
  (111):  1  3  6
.
  (4):                 1
  (22):       1     2  6
  (31):             1  4
  (211):      2  1  5 12
  (1111):  1  6  4 12 24
.
  (5):                        1
  (41):                    1  5
  (32):              1     3 10
  (221):          1  5  2 12 30
  (311):             2  1  7 20
  (2111):      1  3 12  7 27 60
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111).
		

Crossrefs

A321728 Number of integer partitions of n whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 28, 37, 50
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A000701 at a(11) = 28, A000701(11) = 27
A vertical section is a partial Young diagram with at most one square in each row.
Conjecture: a(n) is the number of non-half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(2) = 1 through a(9) = 14 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the non-half-loop-graphical partitions up to n = 9:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (331)  (71)    (81)
                               (421)  (422)   (432)
                               (511)  (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (4311)
                                              (5211)
                                              (6111)
For example, a complete list of all half/full-loop-graphs with degrees y = (4,3,1) is the following:
  {{1,1},{1,2},{1,3},{2,2}}
  {{1},{2},{1,1},{1,2},{2,3}}
  {{1},{2},{1,1},{1,3},{2,2}}
  {{1},{3},{1,1},{1,2},{2,2}}
None of these is a half-loop-graph, as they have full loops (x,x), so y is counted under a(8).
		

Crossrefs

The complement is counted by A321729.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339655.
A027187 counts partitions of even length, with Heinz numbers A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]=={}&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is zero, where m is monomial and e is elementary symmetric functions.
a(n) = A000041(n) - A321729(n).

A321854 Irregular triangle where T(H(u),H(v)) is the number of ways to partition the Young diagram of u into vertical sections whose sizes are the parts of v, where H is Heinz number.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 1, 3, 1, 0, 2, 0, 4, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 6, 0, 6, 1, 1, 3, 4, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
A vertical section is a partial Young diagram with at most one square in each row.

Examples

			Triangle begins:
  1
  1
  0  1
  1  1
  0  0  1
  0  2  1
  0  0  0  0  1
  1  3  1
  0  2  0  4  1
  0  0  0  3  1
  0  0  0  0  0  0  1
  0  2  2  5  1
  0  0  0  0  0  0  0  0  0  0  1
  0  0  0  0  0  4  1
  0  0  0  6  0  6  1
  1  3  4  6  1
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1
  0  0  4 10  4  8  1
The 12th row counts the following partitions of the Young diagram of (211) into vertical sections (shown as colorings by positive integers):
  T(12,7) = 0:
.
  T(12,9) = 2:    1 2   1 2
                  1     2
                  2     1
.
  T(12,10) = 2:   1 2   1 2
                  2     1
                  2     1
.
  T(12,12) = 5:   1 2   1 2   1 2   1 2   1 2
                  3     2     3     1     3
                  3     3     2     3     1
.
  T(12,16) = 1:   1 2
                  3
                  4
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[With[{y=Reverse[primeMS[n]]},Table[Length[Select[spsu[ptnverts[y],ptnpos[y]],Sort[Length/@#]==primeMS[k]&]],{k,Sort[Times@@Prime/@#&/@IntegerPartitions[Total[primeMS[n]]]]}]],{n,18}]

A321729 Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A046682 at a(11) = 28, A046682(11) = 29.
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3
Conjecture: a(n) is the number of half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8:
  (1)  (11)  (21)   (22)    (221)    (222)     (322)      (332)
             (111)  (211)   (311)    (321)     (2221)     (2222)
                    (1111)  (2111)   (2211)    (3211)     (3221)
                            (11111)  (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(7).
		

Crossrefs

The complement is counted by A321728.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339656.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 is a triangle counting graphical partitions by length.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is nonzero, where m is monomial symmetric functions and e is elementary symmetric functions.
a(n) = A000041(n) - A321728(n).

A321737 Number of ways to partition the Young diagram of an integer partition of n into vertical sections.

Original entry on oeis.org

1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(4) = 37 partitions into vertical sections of integer partitions of 4:
  1 2 3 4
.
  1 2 3   1 2 3   1 2 3   1 2 3
  4       3       2       1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3 4   2 3   3 2   1 3   1 2   3 1   2 1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3     3     2     3     2     1     1     3     2     1
  4     3     3     2     2     3     2     1     1     1
.
  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
  2   2   2   2   2   1   1   2   2   2   2   1   1   2   1
  3   3   2   3   2   2   2   1   1   3   2   1   2   1   1
  4   3   3   2   2   3   2   3   2   1   1   2   1   1   1
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[Sum[Length[spsu[ptnverts[y],ptnpos[y]]],{y,IntegerPartitions[n]}],{n,6}]

Extensions

a(11)-a(24) from Ludovic Schwob, Aug 28 2023

A321730 Number of ways to partition the Young diagram of an integer partition of n into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 79, 303, 1294, 5934, 29385, 156232, 884893
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(5) = 23 partitions of Young diagrams of integer partitions of 5 into vertical sections of the same sizes as the parts of the original partition, shown as colorings by positive integers:
  1 2 3   1 2 3   1 2 3
  1       2       3
  1       2       3
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  1 2   1 3   1 3   2 1   3 1   3 1   2 3   3 2   2 3   3 2
  3     2     3     3     2     3     1     1     3     3
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  1     3     3     2     3     3     3     3     3
  3     1     4     3     2     4     3     4     4
  4     4     1     4     4     2     4     3     4
.
  1
  2
  3
  4
  5
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Sum[Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]],{y,IntegerPartitions[n]}],{n,5}]

A321914 Tetrangle where T(n,H(u),H(v)) is the coefficient of e(v) in m(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, 1, 0, 0, -4, 2, 4, -4, 1, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, -4, 0, 1, 0, 0, 1, 0, 0, 0, 0, 5, -5, -5, 5, 5, -5, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 5, -3, 1, 0, 0, 0, 0, 5, -1, -2, 0, 1, 0, 0, -5, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in f(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):  -2  1
  (11):  1
.
  (3):    3 -3  1
  (21):  -3  1
  (111):  1
.
  (4):    -4  2  4 -4  1
  (22):    2  1 -2
  (31):    4 -2 -1  1
  (211):  -4     1
  (1111):  1
.
  (5):      5 -5 -5  5  5 -5  1
  (41):    -5  1  5 -3 -1  1
  (32):    -5  5 -1  1 -2
  (221):    5 -3  1
  (311):    5 -1 -2     1
  (2111):  -5  1
  (11111):  1
For example, row 14 gives: m(32) = -5e(5) - e(32) + 5e(41) + e(221) - 2e(311).
		

Crossrefs

A321731 Number of ways to partition the Young diagram of the integer partition with Heinz number n into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 0, 5, 0, 0, 0, 1, 0, 10, 0, 3, 0, 0, 0, 9, 0, 0, 8, 0, 0, 12, 0, 1, 0, 0, 0, 34, 0, 0, 0, 10, 0, 0, 0, 0, 24, 0, 0, 14, 0, 0, 0, 0, 0, 68, 0, 4, 0, 0, 0, 78, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 86, 0, 0, 36, 0, 0, 0, 0, 22, 60, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(30) = 12 partitions of the Young diagram of (321) into vertical sections of sizes (321), shown as colorings by positive integers:
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  1 2     1 3     2 1     3 1     1 2     1 3
  1       1       1       1       2       3
.
  1 2 3   1 2 3   1 2 3   1 2 3   1 2 3   1 2 3
  2 1     3 1     2 3     3 2     2 3     3 2
  2       3       2       2       3       3
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[With[{y=Reverse[primeMS[n]]},Length[Select[spsu[ptnverts[y],ptnpos[y]],Function[p,Sort[Length/@p]==Sort[y]]]]],{n,30}]

A321746 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of e(v) in m(u), where H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 1, -2, 1, 1, 0, 3, -3, 1, -3, 1, 0, -4, 2, 4, -4, 1, 1, 0, 0, 2, 1, -2, 0, 0, 4, -2, -1, 1, 0, 5, -5, -5, 5, 5, -5, 1, -4, 0, 1, 0, 0, -6, 6, 6, 3, -2, -6, -12, 9, 6, -6, 1, -5, 1, 5, -3, -1, 1, 0, -5, 5, -1, 1, -2, 0, 0, 1, 0, 0, 0, 0, 7, -7, -7, -7, 14, 7
Offset: 1

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

Row n has length A000041(A056239(n)).
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of h(v) in f(u), where h is homogeneous symmetric functions and f is forgotten symmetric functions.

Examples

			Triangle begins:
   1
   1
  -2   1
   1   0
   3  -3   1
  -3   1   0
  -4   2   4  -4   1
   1   0   0
   2   1  -2   0   0
   4  -2  -1   1   0
   5  -5  -5   5   5  -5   1
  -4   0   1   0   0
  -6   6   6   3  -2  -6 -12   9   6  -6   1
  -5   1   5  -3  -1   1   0
  -5   5  -1   1  -2   0   0
   1   0   0   0   0
   7  -7  -7  -7  14   7   7   7  -7  -7 -21  14   7  -7   1
   5  -3   1   0   0   0   0
For example, row 10 gives: m(31) = 4e(4) - 2e(22) - e(31) + e(211).
		

Crossrefs

Showing 1-10 of 13 results. Next