A321869 Numbers k such that m = 3k^2 + 2k + 10 and 3m - 2 are both primes.
3, 9, 17, 57, 69, 177, 293, 303, 317, 339, 377, 407, 429, 437, 443, 467, 503, 573, 597, 759, 783, 797, 849, 897, 1329, 1343, 1409, 1899, 1923, 2267, 2357, 2427, 2579, 2679, 2739, 2843, 2967, 3089, 3263, 3279, 3303, 3323, 3419, 3459, 3509, 3933, 3999, 4293
Offset: 1
Keywords
Examples
3 is in the sequence since 3*3^2 + 2*3 + 10 = 43 and 3*43 - 2 = 127 are both primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
- Wikipedia, Schinzel's Hypothesis H.
Programs
-
Mathematica
Select[Range[1000], PrimeQ[3#^2 + 2# + 10] && PrimeQ[9#^2 + 6# + 28] &] Select[Range[4300],With[{m=3#^2+2#+10},AllTrue[{m,3m-2},PrimeQ]&]] (* Harvey P. Dale, Dec 13 2024 *)
-
PARI
isok(n) = isprime(m=3*n^2 + 2*n + 10) && isprime(3*m-2); \\ Michel Marcus, Nov 20 2018
Comments