cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321874 If n = Product (p_j^k_j) then a(n) = Product (prime(p_j)^prime(k_j)).

Original entry on oeis.org

1, 9, 25, 27, 121, 225, 289, 243, 125, 1089, 961, 675, 1681, 2601, 3025, 2187, 3481, 1125, 4489, 3267, 7225, 8649, 6889, 6075, 1331, 15129, 3125, 7803, 11881, 27225, 16129, 177147, 24025, 31329, 34969, 3375, 24649, 40401, 42025, 29403, 32041, 65025, 36481, 25947, 15125
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			a(12) = a(2^2 * 3^1) = prime(2)^prime(2) * prime(3)^prime(1) = 3^3 * 5^2 = 675.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (Prime[#[[1]]]^Prime[#[[2]]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 45}]
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, prime(f[k,1])^prime(f[k,2])); \\ Michel Marcus, Nov 20 2018
    
  • PARI
    apply( A321874(n)=factorback(apply(prime,factor(n))), [1..49]) \\ M. F. Hasler, Nov 20 2018

Formula

Multiplicative with a(p^e) = prime(p)^prime(e). - M. F. Hasler, Nov 20 2018
Sum_{n>=1} 1/a(n) = Product_{m>=1} (1 + Sum_{k>=1} 1/prime(m)^prime(k)) = 1.22718741... . - Amiram Eldar, Jan 20 2024