cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321877 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)^sigma_k(j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 7, 6, 1, 1, 9, 15, 14, 10, 1, 1, 17, 37, 41, 28, 17, 1, 1, 33, 99, 137, 107, 58, 25, 1, 1, 65, 277, 491, 487, 286, 106, 38, 1, 1, 129, 795, 1829, 2429, 1749, 700, 201, 59, 1, 1, 257, 2317, 6971, 12763, 12056, 5901, 1735, 372, 86
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   1,   1,    1,    1,     1,      1,  ...
   2,   3,    5,    9,    17,     33,  ...
   4,   7,   15,   37,    99,    277,  ...
   6,  14,   41,  137,   491,   1829,  ...
  10,  28,  107,  487,  2429,  12763,  ...
		

Crossrefs

Main diagonal gives A321042.
Cf. A321876.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^(2 j))), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten

Formula

G.f. of column k: Product_{i>=1, j>=1} (1 + x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^(2*j)))).

A322104 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} d*sigma_k(d).

Original entry on oeis.org

1, 1, 5, 1, 7, 7, 1, 11, 13, 17, 1, 19, 31, 35, 11, 1, 35, 85, 95, 31, 35, 1, 67, 247, 311, 131, 91, 15, 1, 131, 733, 1127, 631, 341, 57, 49, 1, 259, 2191, 4295, 3131, 1615, 351, 155, 34, 1, 515, 6565, 16775, 15631, 8645, 2409, 775, 130, 55, 1, 1027, 19687, 66311, 78131, 49111, 16815, 4991, 850, 217, 23
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,     1,      1,  ...
   5,   7,   11,    19,    35,     67,  ...
   7,  13,   31,    85,   247,    733,  ...
  17,  35,   95,   311,  1127,   4295,  ...
  11,  31,  131,   631,  3131,  15631,  ...
  35,  91,  341,  1615,  8645,  49111,  ...
		

Crossrefs

Columns k=0..3 give A060640, A001001, A027847, A027848.
Cf. A109974, A320940 (diagonal), A321876, A322103.

Programs

  • Mathematica
    Table[Function[k, Sum[d DivisorSigma[k, d], {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[j DivisorSigma[k, j] x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, d^(k+1)*sigma(n/d))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j*sigma_k(j)*x^j/(1 - x^j).
L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^sigma_k(j)).
A(n,k) = Sum_{d|n} d^(k+1)*sigma_1(n/d).
Showing 1-2 of 2 results.