cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321878 Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 2, 0, 7, 5, 0, 11, 9, 1, 0, 15, 17, 2, 0, 22, 28, 5, 0, 30, 47, 10, 0, 42, 74, 21, 1, 0, 56, 116, 37, 2, 0, 77, 175, 67, 5, 0, 101, 263, 112, 10, 0, 135, 385, 187, 20, 0, 176, 560, 302, 40, 1, 0, 231, 800, 479, 72, 2, 0, 297, 1135, 741, 127, 5
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle contains only elements with 0 <= k <= A003056(n). T(n,k) = 0 for k > A003056(n).
For fixed k>=1, T(n,k) ~ exp(sqrt(2*(Pi^2 - 6*polylog(2, 1-k))*n/3)) * sqrt(Pi^2 - 6*polylog(2, 1-k)) / (4*k!*sqrt(3*k)*Pi*n). - Vaclav Kotesovec, Sep 18 2019

Examples

			T(6,1) = 11: 111111a, 2a1111a, 22a11a, 222a, 3a111a, 3a2a1a, 33a, 4a11a, 4a2a, 5a1a, 6a.
T(6,2) = 9: 2a1111b, 22a11b, 3a111b, 3a2a1b, 3a2b1a, 3a2b1b, 4a11b, 4a2b, 5a1b.
T(6,3) = 1: 3a2b1c.
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  2;
  0,  3,   1;
  0,  5,   2;
  0,  7,   5;
  0, 11,   9,  1;
  0, 15,  17,  2;
  0, 22,  28,  5;
  0, 30,  47, 10;
  0, 42,  74, 21, 1;
  0, 56, 116, 37, 2;
  0, 77, 175, 67, 5;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000041 (for n>0), A327285, A327286, A327287, A327288, A327289, A327290, A327291, A327292, A327293.
Row sums give A305106.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
         (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
        end:
    T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
    Table[Table[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^i*binomial(k,i) A321884(n,k-i).
T(n*(n+1)/2,n) = T(A000217(n),n) = 1.
T(n*(n+3)/2,n) = T(A000096(n),n) = A000712(n).
Sum_{k=1..A003056(n)} k * T(n,k) = A322304(n).