A321878 Number T(n,k) of partitions of n into colored blocks of equal parts, such that all colors from a set of size k are used and the colors are introduced in increasing order; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 1, 0, 2, 0, 3, 1, 0, 5, 2, 0, 7, 5, 0, 11, 9, 1, 0, 15, 17, 2, 0, 22, 28, 5, 0, 30, 47, 10, 0, 42, 74, 21, 1, 0, 56, 116, 37, 2, 0, 77, 175, 67, 5, 0, 101, 263, 112, 10, 0, 135, 385, 187, 20, 0, 176, 560, 302, 40, 1, 0, 231, 800, 479, 72, 2, 0, 297, 1135, 741, 127, 5
Offset: 0
Examples
T(6,1) = 11: 111111a, 2a1111a, 22a11a, 222a, 3a111a, 3a2a1a, 33a, 4a11a, 4a2a, 5a1a, 6a. T(6,2) = 9: 2a1111b, 22a11b, 3a111b, 3a2a1b, 3a2b1a, 3a2b1b, 4a11b, 4a2b, 5a1b. T(6,3) = 1: 3a2b1c. Triangle T(n,k) begins: 1; 0, 1; 0, 2; 0, 3, 1; 0, 5, 2; 0, 7, 5; 0, 11, 9, 1; 0, 15, 17, 2; 0, 22, 28, 5; 0, 30, 47, 10; 0, 42, 74, 21, 1; 0, 56, 116, 37, 2; 0, 77, 175, 67, 5; ...
Links
- Alois P. Heinz, Rows n = 0..1000, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k))) end: T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!: seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..20);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]]; T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!; Table[Table[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
Comments