A321884
Number A(n,k) of partitions of n into colored blocks of equal parts with colors from a set of size k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 8, 5, 0, 1, 5, 8, 15, 14, 7, 0, 1, 6, 10, 24, 27, 24, 11, 0, 1, 7, 12, 35, 44, 51, 40, 15, 0, 1, 8, 14, 48, 65, 88, 93, 64, 22, 0, 1, 9, 16, 63, 90, 135, 176, 159, 100, 30, 0, 1, 10, 18, 80, 119, 192, 295, 312, 264, 154, 42, 0
Offset: 0
A(3,2) = 8: 3a, 3b, 2a1a, 2a1b, 2b1a, 2b1b, 111a, 111b.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 4, 6, 8, 10, 12, 14, 16, ...
0, 3, 8, 15, 24, 35, 48, 63, 80, ...
0, 5, 14, 27, 44, 65, 90, 119, 152, ...
0, 7, 24, 51, 88, 135, 192, 259, 336, ...
0, 11, 40, 93, 176, 295, 456, 665, 928, ...
0, 15, 64, 159, 312, 535, 840, 1239, 1744, ...
0, 22, 100, 264, 544, 970, 1572, 2380, 3424, ...
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
A321880
Number of partitions of n into colored blocks of equal parts with colors from a set of size n.
Original entry on oeis.org
1, 1, 4, 15, 44, 135, 456, 1239, 3424, 8694, 27240, 65846, 171864, 406133, 960848, 2615460, 5998416, 14304089, 32273100, 72271516, 153768520, 385905072, 817485768, 1841794483, 3915726528, 8388036950, 17125197336, 35051814558, 78986793592, 160176485813
Offset: 0
a(3) = 15: 3a, 3b, 3c, 2a1a, 2a1b, 2a1c, 2b1a, 2b1b, 2b1c, 2c1a, 2c1b, 2c1c, 111a, 111b, 111c.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
end:
a:= n-> b(n$3):
seq(a(n), n=0..31);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := b[n, n, n];
a /@ Range[0, 31] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
A305106
Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 21, 34, 55, 87, 138, 211, 324, 486, 727, 1079, 1584, 2305, 3337, 4789, 6830, 9712, 13689, 19225, 26841, 37322, 51598, 71108, 97580, 133350, 181558, 246335, 332991, 448706, 602607, 806732, 1077333, 1433885, 1903682, 2520246, 3328549, 4383929
Offset: 0
The a(6) = 21 unitary factorizations:
(13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64)
(2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8)
(2*3*5)
The a(6) = 21 multiset partitions:
{{6}}
{{2,4}}
{{1,5}}
{{3,3}}
{{2,2,2}}
{{1,1,4}}
{{1,2,3}}
{{1,1,2,2}}
{{1,1,1,3}}
{{1,1,1,1,2}}
{{1,1,1,1,1,1}}
{{1},{5}}
{{1},{2,3}}
{{2},{4}}
{{2},{1,3}}
{{2},{1,1,1,1}}
{{1,1},{4}}
{{1,1},{2,2}}
{{3},{1,2}}
{{3},{1,1,1}}
{{1},{2},{3}}
Cf.
A000110,
A001055,
A001221,
A001970,
A034444,
A089233,
A258466,
A259936,
A281116,
A285572,
A305078,
A305079.
-
Table[Sum[BellB[Length[Union[y]]],{y,IntegerPartitions[n]}],{n,30}]
(* Second program: *)
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz in A321878 *)
A322304
Total number of colors in all partitions of n into colored blocks of equal parts, such that all colors from a given set are used and the colors are introduced in increasing order.
Original entry on oeis.org
0, 1, 2, 5, 9, 17, 32, 55, 93, 154, 257, 407, 648, 1003, 1546, 2367, 3566, 5323, 7889, 11579, 16854, 24495, 35171, 50345, 71520, 101184, 142118, 198981, 277260, 384457, 530875, 730220, 1000192, 1365105, 1856155, 2514737, 3398397, 4574460, 6141309, 8218229
Offset: 0
a(4) = 9. The colored partitions are: 1111a, 2a11a, 22a, 3a1a, 4a, 2a11b, 3a1b. The total number of colors used is 1+1+1+1+1+2+2 = 9.
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= proc(n) option remember; add(add(binomial(k, i)*(-1)^i*
b(n$2, k-i), i=0..k)/(k-1)!, k=1..floor((sqrt(1+8*n)-1)/2))
end:
seq(a(n), n=0..44);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := Sum[Sum[Binomial[k, i] (-1)^i b[n, n, k - i], {i, 0, k}]/(k - 1)!, {k, 1, Floor[(Sqrt[1 + 8n] - 1)/2]}];
a /@ Range[0, 44] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A327285
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size two are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 9, 17, 28, 47, 74, 116, 175, 263, 385, 560, 800, 1135, 1589, 2210, 3041, 4160, 5642, 7609, 10189, 13575, 17976, 23694, 31066, 40559, 52708, 68230, 87957, 112985, 144594, 184437, 234466, 297159, 375453, 473039, 594298, 744681, 930674, 1160271, 1442989
Offset: 3
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(2):
seq(a(n), n=3..44);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 2}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[3, 44] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A327286
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size three are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 10, 21, 37, 67, 112, 187, 302, 479, 741, 1136, 1707, 2539, 3732, 5424, 7804, 11133, 15743, 22088, 30774, 42582, 58540, 80007, 108725, 146955, 197646, 264525, 352433, 467541, 617651, 812734, 1065417, 1391592, 1811296, 2349775, 3038515, 3917052, 5034647
Offset: 6
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(3):
seq(a(n), n=6..47);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 3}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[6, 47] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A327287
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size four are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 10, 20, 40, 72, 127, 217, 362, 587, 954, 1494, 2330, 3562, 5403, 8060, 11954, 17531, 25490, 36733, 52570, 74620, 105273, 147479, 205390, 284516, 391819, 536891, 732028, 993540, 1342174, 1805795, 2419115, 3228530, 4292484, 5686507, 7506642, 9877321
Offset: 10
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(4):
seq(a(n), n=10..49);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 4}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[10, 49] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A327288
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size five are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 73, 125, 222, 372, 623, 1002, 1611, 2559, 3984, 6139, 9355, 14096, 21028, 31093, 45523, 66403, 95779, 137495, 195813, 277531, 390428, 546942, 761113, 1054749, 1454412, 1996271, 2727247, 3711683, 5029288, 6789347, 9130315, 12234596, 16335987
Offset: 15
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(5):
seq(a(n), n=15..53);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]/ k!];
a /@ Range[15, 53] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A327289
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size six are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 123, 210, 362, 603, 994, 1595, 2541, 3956, 6225, 9501, 14516, 21820, 32703, 48315, 71175, 103589, 150167, 216413, 309627, 440400, 623404, 877303, 1228493, 1712235, 2374639, 3278894, 4507571, 6175713, 8421243, 11447049, 15496728
Offset: 21
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(6):
seq(a(n), n=21..59);
A327290
Number of partitions of n into colored blocks of equal parts, such that all colors from a set of size seven are used and the colors are introduced in increasing order.
Original entry on oeis.org
1, 2, 5, 10, 20, 36, 65, 110, 204, 337, 573, 934, 1527, 2416, 3826, 5907, 9088, 13963, 21070, 31642, 47131, 69707, 102214, 149143, 215754, 310547, 443840, 633139, 895294, 1262971, 1770236, 2473601, 3436809, 4761393, 6561269, 9015761, 12330231, 16812326
Offset: 28
-
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i)*k+b(n, i-1, k)))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k)/k!)(7):
seq(a(n), n=28..65);
Showing 1-10 of 13 results.