A321880 Number of partitions of n into colored blocks of equal parts with colors from a set of size n.
1, 1, 4, 15, 44, 135, 456, 1239, 3424, 8694, 27240, 65846, 171864, 406133, 960848, 2615460, 5998416, 14304089, 32273100, 72271516, 153768520, 385905072, 817485768, 1841794483, 3915726528, 8388036950, 17125197336, 35051814558, 78986793592, 160176485813
Offset: 0
Keywords
Examples
a(3) = 15: 3a, 3b, 3c, 2a1a, 2a1b, 2a1c, 2b1a, 2b1b, 2b1c, 2c1a, 2c1b, 2c1c, 111a, 111b, 111c.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1650
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add( (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k))) end: a:= n-> b(n$3): seq(a(n), n=0..31);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]]; a[n_] := b[n, n, n]; a /@ Range[0, 31] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)