cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321880 Number of partitions of n into colored blocks of equal parts with colors from a set of size n.

Original entry on oeis.org

1, 1, 4, 15, 44, 135, 456, 1239, 3424, 8694, 27240, 65846, 171864, 406133, 960848, 2615460, 5998416, 14304089, 32273100, 72271516, 153768520, 385905072, 817485768, 1841794483, 3915726528, 8388036950, 17125197336, 35051814558, 78986793592, 160176485813
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2019

Keywords

Examples

			a(3) = 15: 3a, 3b, 3c, 2a1a, 2a1b, 2a1c, 2b1a, 2b1b, 2b1c, 2c1a, 2c1b, 2c1c, 111a, 111b, 111c.
		

Crossrefs

Main diagonal of A321884.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
          (t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..31);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]][n - i j], {j, 1, n/i}] k + b[n, i - 1, k]]];
    a[n_] := b[n, n, n];
    a /@ Range[0, 31] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) = [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j).
a(n) = A321884(n,n).
a(n) = Sum_{i=0..floor((sqrt(1+8*n)-1)/2)} n!/(n-i)! * A321878(n,i).
a(n) = n * A325916(n) for n > 0, a(n) = 1.