A321913 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in h(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and h is homogeneous symmetric functions.
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 3, 2, 4, 6, 1, 2, 2, 3, 4, 1, 4, 3, 7, 12, 1, 6, 4, 12, 24, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 1, 2, 3, 5, 4, 7, 10, 1, 3, 5, 11, 8, 18, 30, 1, 3, 4, 8, 7, 13, 20, 1, 4, 7, 18, 13, 33, 60, 1, 5
Offset: 1
Examples
Tetrangle begins: (1): 1 . (2): 1 1 (11): 1 2 . (3): 1 1 1 (21): 1 2 3 (111): 1 3 6 . (4): 1 1 1 1 1 (22): 1 3 2 4 6 (31): 1 2 2 3 4 (211): 1 4 3 7 12 (1111): 1 6 4 12 24 . (5): 1 1 1 1 1 1 1 (41): 1 2 2 3 3 4 5 (32): 1 2 3 5 4 7 10 (221): 1 3 5 11 8 18 30 (311): 1 3 4 8 7 13 20 (2111): 1 4 7 18 13 33 60 (11111): 1 5 10 30 20 60 20 For example, row 14 gives: h(32) = m(5) + 3m(32) + 2m(41) + 5m(221) + 4m(311) + 7m(2111) + 10m(11111).
Links
- Wikipedia, Symmetric polynomial
Comments