A321947 Column k=2 of triangle A257673.
1, 6, 21, 62, 162, 396, 917, 2036, 4380, 9152, 18694, 37380, 73444, 141918, 270370, 508178, 943876, 1733468, 3151396, 5674152, 10126435, 17921016, 31468623, 54848750, 94935565, 163232096, 278903915, 473693432, 799949111, 1343550666, 2244807927, 3731885232
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..10000
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, k*add( b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n) end: a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..35);
-
Mathematica
A321947[n_] := Module[{nn = n}, SeriesCoefficient[Product[1/(1 - x^i)^(2 i), {i, 1, nn}], {x, 0, nn}] - 2*SeriesCoefficient[Product[(1 - x^k)^-k, {k, nn}], {x, 0, nn}]]; Table[A321947[n], {n, 2, 33}] (* Robert P. P. McKone, Jan 30 2021 *) b[n_, k_] := b[n, k] = If[n == 0, 1, k*Sum[ b[n - j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; a[n_] := With[{k = 2}, Sum[b[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
Formula
G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^2. - Ilya Gutkovskiy, Jan 30 2021