cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321947 Column k=2 of triangle A257673.

Original entry on oeis.org

1, 6, 21, 62, 162, 396, 917, 2036, 4380, 9152, 18694, 37380, 73444, 141918, 270370, 508178, 943876, 1733468, 3151396, 5674152, 10126435, 17921016, 31468623, 54848750, 94935565, 163232096, 278903915, 473693432, 799949111, 1343550666, 2244807927, 3731885232
Offset: 2

Views

Author

Alois P. Heinz, Nov 22 2018

Keywords

Crossrefs

Column k=2 of A257673.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
          b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..35);
  • Mathematica
    A321947[n_] := Module[{nn = n}, SeriesCoefficient[Product[1/(1 - x^i)^(2 i), {i, 1, nn}], {x, 0, nn}] - 2*SeriesCoefficient[Product[(1 - x^k)^-k, {k, nn}], {x, 0, nn}]]; Table[A321947[n], {n, 2, 33}] (* Robert P. P. McKone, Jan 30 2021 *)
    b[n_, k_] := b[n, k] = If[n == 0, 1, k*Sum[
         b[n - j, k]*DivisorSigma[2, j], {j, 1, n}]/n];
    a[n_] := With[{k = 2}, Sum[b[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]];
    Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^2. - Ilya Gutkovskiy, Jan 30 2021
a(n) = A161870(n) - 2*A000219(n). - Vaclav Kotesovec, Jan 30 2021