cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321960 Array of sequences read by descending antidiagonals, A(n) the Jacobi square of the sequence n, n+1, n+2, ....

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 92, 57, 20, 5, 1, 0, 203, 426, 303, 116, 30, 6, 1, 0, 877, 2146, 1752, 744, 205, 42, 7, 1, 0, 4140, 11624, 10845, 5140, 1535, 330, 56, 8, 1, 0, 21147, 67146, 71139, 37676, 12300, 2820, 497, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 27 2018

Keywords

Comments

For definitions and comments see A321964.

Examples

			First few rows of the array start:
[0] 1, 0,  0,   0,    0,     0,      0,       0,        0, ... A000007
[1] 1, 1,  2,   5,   15,    52,    203,     877,     4140, ... A000110
[2] 1, 2,  6,  22,   92,   426,   2146,   11624,    67146, ... A074664
[3] 1, 3, 12,  57,  303,  1752,  10845,   71139,   491064, ... A321959
[4] 1, 4, 20, 116,  744,  5140,  37676,  290224,  2334300, ...
[5] 1, 5, 30, 205, 1535, 12300, 103975,  918785,  8434740, ...
[6] 1, 6, 42, 330, 2820, 25662, 245358, 2443272, 25188870, ...
[7] 1, 7, 56, 497, 4767, 48496, 516761, 5719399, 65369136, ...
Seen as triangle:
[0] 1;
[1] 0,   1;
[2] 0,   1,    1;
[3] 0,   2,    2,    1;
[4] 0,   5,    6,    3,   1;
[5] 0,  15,   22,   12,   4,   1;
[6] 0,  52,   92,   57,  20,   5,  1;
[7] 0, 203,  426,  303, 116,  30,  6, 1;
[8] 0, 877, 2146, 1752, 744, 205, 42, 7, 1;
		

Crossrefs

Rows of array: A000007, A000110, A074664, A321959.
Columns include: A002378, A033445. Row sums of triangle: A321958.
Cf. A321964.

Programs

  • Maple
    # The function JacobiSquare is defined in A321964.
    s := n -> [seq(n+k, k = 0..9)]: Trow := n -> JacobiSquare(s(n)):
    for n from 0 to 7 do lprint(Trow(n)) od;
  • Mathematica
    nmax = 10;
    JacobiCF[a_, b_, p_:2] := Module[{m, k}, m = 1; For[k = Length[a], k >= 1, k--, m = 1 - b[[k]]*x - a[[k]]*x^p/m]; 1/m];
    JacobiSquare[a_, p_: 2] := Module[{cf, ser}, cf = JacobiCF[a, a, p]; ser = Series[cf, {x, 0, Length[a]}]; CoefficientList[ser, x]];
    s[n_] := Table[n + k, {k, 0, nmax}];
    row[n_] := row[n] = JacobiSquare[s[n]];
    T[, 0] = 1; T[0, ] = 0; T[n_, k_] := row[n][[k + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 13 2019, after Peter Luschny in A321964 *)
  • Sage
    def JacobiCF(a, b, dim, p=2):
        m = 1
        for k in range(dim-1, -1, -1):
            m = 1 - b(k)*x - a(k)*x^p/m
        return 1/m
    def JacobiGF(a, b, dim, p=2):
        cf = JacobiCF(a, b, dim, p)
        return cf.series(x, dim).list()
    def JacobiSquare(a, dim, p=2):
        cf = JacobiCF(a, a, dim, p)
        return cf.series(x, dim).list()
    def StieltjesGF(a, dim, p=2):
        return JacobiGF(a, lambda n: 0, dim, p)
    def Trow(n): return JacobiSquare(lambda k: n+k, 10)
    for n in (0..4): print(Trow(n))

Formula

T(n, k) = A(n)[k] where A(n) is the Jacobi square of the sequence s(j) = n + j, j >= 0.