A321966 Triangle read by rows, coefficients of a family of orthogonal polynomials, T(n, k) for 0 <= k <= n.
1, 1, 1, 2, 5, 1, 6, 27, 12, 1, 24, 168, 123, 22, 1, 120, 1200, 1275, 365, 35, 1, 720, 9720, 13950, 5655, 855, 51, 1, 5040, 88200, 163170, 87465, 18480, 1722, 70, 1, 40320, 887040, 2046240, 1387680, 383145, 49476, 3122, 92, 1
Offset: 0
Examples
p(0,x) = 1; p(1,x) = x + 1; p(2,x) = x^2 + 5*x + 2; p(3,x) = x^3 + 12*x^2 + 27*x + 6; p(4,x) = x^4 + 22*x^3 + 123*x^2 + 168*x + 24; p(5,x) = x^5 + 35*x^4 + 365*x^3 + 1275*x^2 + 1200*x + 120; p(6,x) = x^6 + 51*x^5 + 855*x^4 + 5655*x^3 + 13950*x^2 + 9720*x + 720;
Links
- Peter Luschny, Plot of the polynomials
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 21.
Programs
-
Maple
P := proc(n) option remember; local a, b, c; a := n -> 3*n-2; b := n -> (n-1)*(3*n-4); c := n -> (n-2)^2*(n-1); if n = 0 then return 1 fi; if n = 1 then return x + 1 fi; if n = 2 then return x^2 + 5*x + 2 fi; expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3)) end: seq(print(P(n)), n=0..6); # Computes the polynomials.
-
Mathematica
a[n_] := 3n-2; b[n_] := (n-1)(3n-4); c[n_] := (n-2)^2 (n-1); P[n_] := P[n] = Switch[n, 0, 1, 1, x+1, 2, x^2 + 5x + 2, _, Expand[(x+a[n]) P[n-1] - b[n] P[n-2] + c[n] P[n-3]]]; Table[CoefficientList[P[n], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 01 2019, from Maple *)
-
Sage
# uses[RiordanSquare from A321620] R = RiordanSquare((1 - 2*x)^(-1/2), 9, True).inverse() for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])
Formula
Let R be the inverse of the Riordan square [see A321620] of (1 - 2*x)^(-1/2) then T(n, k) = (-1)^(n-k)*R(n, k).
Comments