cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A321966 Triangle read by rows, coefficients of a family of orthogonal polynomials, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 6, 27, 12, 1, 24, 168, 123, 22, 1, 120, 1200, 1275, 365, 35, 1, 720, 9720, 13950, 5655, 855, 51, 1, 5040, 88200, 163170, 87465, 18480, 1722, 70, 1, 40320, 887040, 2046240, 1387680, 383145, 49476, 3122, 92, 1
Offset: 0

Views

Author

Peter Luschny, Dec 20 2018

Keywords

Comments

The polynomials represent a family of orthogonal polynomials which obey a recurrence of the form p(n, x) = (x + alpha(n))*p(n-1, x) - beta(n)*p(n-2, x) + gamma(n)*p(n-3, x). For the details see the Maple program.
We conjecture that the polynomials have only negative and simple real roots.
From Giuliano Cabrele, Sep 09 2021: (Start)
Let He(n,x) define the probabilist's version of Hermite polynomials.
Then the terms of the triangle appear to be the connection coefficients in
x^n*He(n,x) = Sum_{k=0..n} T(n,k)*He(2k,x).
These are generated by the explicit formula
T(n,m) = 2^(n-m)*Sum_{j=0..floor(n/2)} C(n,2*j)*C(2*n-2*j,2*m)*Gamma(1/2 + n - m - j)/Gamma(1/2 - j).
A formal proof that they correspond to the original definition is needed. (End)

Examples

			p(0,x) = 1;
p(1,x) = x + 1;
p(2,x) = x^2 + 5*x + 2;
p(3,x) = x^3 + 12*x^2 + 27*x + 6;
p(4,x) = x^4 + 22*x^3 + 123*x^2 + 168*x + 24;
p(5,x) = x^5 + 35*x^4 + 365*x^3 + 1275*x^2 + 1200*x + 120;
p(6,x) = x^6 + 51*x^5 + 855*x^4 + 5655*x^3 + 13950*x^2 + 9720*x + 720;
		

Crossrefs

p(n, 1) = A321965(n); p(n, 0) = n! = A000142(n).
Cf. A321620.

Programs

  • Maple
    P := proc(n) option remember; local a, b, c;
    a := n -> 3*n-2; b := n -> (n-1)*(3*n-4); c := n -> (n-2)^2*(n-1);
    if n = 0 then return 1 fi;
    if n = 1 then return x + 1 fi;
    if n = 2 then return x^2 + 5*x + 2 fi;
    expand((x+a(n))*P(n-1) - b(n)*P(n-2) + c(n)*P(n-3)) end:
    seq(print(P(n)), n=0..6); # Computes the polynomials.
  • Mathematica
    a[n_] := 3n-2; b[n_] := (n-1)(3n-4); c[n_] := (n-2)^2 (n-1);
    P[n_] := P[n] = Switch[n, 0, 1, 1, x+1, 2, x^2 + 5x + 2, _, Expand[(x+a[n]) P[n-1] - b[n] P[n-2] + c[n] P[n-3]]];
    Table[CoefficientList[P[n], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 01 2019, from Maple *)
  • Sage
    # uses[RiordanSquare from A321620]
    R = RiordanSquare((1 - 2*x)^(-1/2), 9, True).inverse()
    for n in (0..8): print([(-1)^(n-k)*c for (k, c) in enumerate(R.row(n)[:n+1])])

Formula

Let R be the inverse of the Riordan square [see A321620] of (1 - 2*x)^(-1/2) then T(n, k) = (-1)^(n-k)*R(n, k).