A321999 Sum of digits of n minus the number of digits of n.
0, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7
Offset: 0
Examples
a(0) = 0 - 0 = 0. (We consider 0 has 0 digits.) a(1) = 1 - 1 = 0; a(2) = 2 - 1 = 1, ..., a(9) = 9 - 1 = 8. (General formula: a(10^k - 1) = 8*k.) a(10) = 1 - 2 = -1. (General formula: a(10^k) = -k.) a(11) = 1+1 - 2 = 0, ..., a(19) = 1+9 - 2 = 8; a(20) = 2+0 - 2 = 0. (General formula: a(m*10^k) = a(m) - k.) a(29) = 2+9 - 2 = 9, ..., a(99) = 9+9 - 2 = 16: cf. a(9); a(100) = 1+0+0 - 3 = -2; a(101) = 1+0+1 - 3 = -1; a(102) = 1+0+2 - 3 = 0, ..., a(109) = 1+0+9 - 3 = 7; a(110) = 1+1+0 - 3 = -1, ..., a(119) = 1+1+9 - 3 = 8, ..., a(199) = 1+9+9 - 3 = 16, a(200) = 2+0+0 - 3 = -1: cf. a(20), ..., a(999) = 9+9+9 - 3 = 24: cf. a(9); a(1000) = 1+0+0+0 - 4 = -3, ..., a(1001) = 1+0+0+1 - 4 = -2, ....
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
a:= n-> add(i, i=convert(n, base, 10))-length(n): seq(a(n), n=0..100); # Alois P. Heinz, Dec 10 2018
-
Mathematica
Table[(Plus@@IntegerDigits[n]) - Length[IntegerDigits[n]] + KroneckerDelta[n, 0], {n, 0, 99}] (* Alonso del Arte, Dec 07 2018 *) Table[Total[IntegerDigits[n]]-IntegerLength[n],{n,0,100}] (* Harvey P. Dale, Dec 27 2022 *)
-
PARI
A321999(n)=sumdigits(n)-if(n,logint(n,10)+1)
Comments