cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322008 1/(1 - Integral_{x=0..1} x^(x^n) dx), rounded to the nearest integer.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 123, 146, 171, 198, 227, 258, 291, 326, 364, 403, 444, 487, 532, 579, 628, 679, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1230, 1301, 1374, 1449, 1526, 1605, 1686, 1769, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506, 2608
Offset: 0

Views

Author

M. F. Hasler, Mar 01 2019

Keywords

Comments

Linked to the problem of sorting parenthesized expressions (x^x....^x) (cf. A000081 and A222379, A222380) according to the value of their integral from 0 to 1: This value is maximal, for a given number n of x's, for F[n](x) := (...(x^x)^x....)^x = x^(x^(n-1)), which converges pointwise to x^0 = x for all x < 1, as n -> oo. The corresponding integrals therefore tend to 1 as n -> oo. This sequence is a convenient measure of the distance of these integrals from 1.
See A322009 for the minimal values of such integrals.

Examples

			For n=0, Integral_{x=0..1} x^(x^0) dx = Integral_{x=0..1} x^1 dx = 1/2, so a(0) = 1/(1 - 1/2) = 1 / 0.5 = 2.
For n=1, Integral_{x=0..1} x^(x^1) dx = Integral_{x=0..1} x^x dx = A083648 = 0.78343..., so a(1) = round( 1 / (1 - 0.78343...)) = round( 1 / 0.21656...) = 5.
		

Crossrefs

Programs

  • Maple
    a:= n-> round(evalf(1/(1-(int(x^(x^n), x=0..1))))):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 01 2019
  • Mathematica
    f[n_] := Round[1/(1 - NIntegrate[x^(x^n), {x, 0, 1}])]; Array[f, 51, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    apply( A322008(n)=1\/intnum(x=0,1,1-x^x^n), [0..50])

Formula

Conjectures from Colin Barker, Mar 07 2019: (Start)
G.f.: (2 + x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^9 + x^10 - x^11) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10) for n>11.
(End)