cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306679 a(n) = round(1/(1-Integral_{x=0..1} f_n(x) dx)), where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.

Original entry on oeis.org

2, 5, 10, 2, 17, 6, 2, 4, 26, 13, 3, 5, 8, 2, 2, 4, 2, 37, 21, 8, 11, 15, 3, 5, 5, 6, 9, 6, 2, 2, 3, 2, 2, 4, 4, 2, 3, 50, 32, 16, 3, 19, 23, 7, 11, 2, 4, 7, 10, 12, 16, 13, 2, 3, 6, 3, 5, 5, 7, 6, 5, 9, 8, 6, 8, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 4, 3, 4, 4
Offset: 1

Views

Author

Alois P. Heinz, Mar 04 2019

Keywords

Comments

The ordering of the functions f_n is defined in A215703: f_1, f_2, ... = x, x^x, x^(x^2), x^(x^x), x^(x^3), x^(x^x*x), x^(x^(x^2)), x^(x^(x^x)), x^(x^4), x^(x^x*x^2), ... . Values of new records are in A322008.

Crossrefs

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    a:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], map(f-> round(evalf(
          1/(1-int(f, x=0..1)))), T(i))[]] od; l[n] end
        end():
    seq(a(n), n=1..100);

Formula

a(n) >= 2 for n >= 1.

A322009 1/(Integral_{x=0..1} x^(x^(x^n)) dx - 1/2), rounded to the nearest integer.

Original entry on oeis.org

4, 14, 33, 64, 110, 174, 260, 369, 506, 672, 872, 1108, 1382, 1699, 2061, 2472, 2933, 3448, 4021, 4653, 5349, 6110, 6941, 7844, 8822, 9878, 11015, 12237, 13545, 14943, 16435, 18023, 19709, 21498, 23392, 25394, 27507, 29734, 32079, 34543, 37131, 39844, 42687, 45662, 48772
Offset: 0

Views

Author

M. F. Hasler, Mar 01 2019

Keywords

Comments

Linked to the problem of sorting parenthesized expressions (x^x....^x) (cf. A000081 and A222379, A222380) according to the value of their integral from 0 to 1: This value is minimal, for a given number n of x's, for G[n](x) := x^((...(x^x)^x....)^x) = x^(x^(x^(n-2))), which converges pointwise to x^(x^0) = x^1 = x for all x in [0,1], as n -> oo. The corresponding integrals therefore tend to 1/2 as n -> oo. This sequence is a convenient measure of the distance of these integrals from 1/2.
See A322008 for the maximal values of such integrals.

Examples

			For n=0, Integral_{x=0..1} x^(x^(x^0)) dx = Integral_{x=0..1} x^x dx = A083648 = 0.7834..., and 1/(0.7834... - 0.5) = 1 / 0.2834... = 3.528..., so a(0) = round(3.528...) = 4.
For n=1, Integral_{x=0..1} x^(x^(x^1)) dx = Integral_{x=0..1} x^(x^x) dx = 0.5731..., and 1/(0.5731... - 0.5) = 1 / 0.0731... = 13.67..., so a(1) = round(13.67...) = 14.
		

Crossrefs

Programs

  • Maple
    Digits:= 20:
    a:= n-> round(evalf(1/(int(x^(x^(x^n)), x=0..1)-1/2))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Mar 01 2019
  • Mathematica
    f[n_] := Round[1/(NIntegrate[x^(x^(x^n)), {x, 0, 1}, WorkingPrecision -> 24] - 1/2)]; Array[f, 45, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    A322009(n)=1\/intnum(x=0, 1, x^x^x^n-x)
Showing 1-2 of 2 results.