cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215703 A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 3, 0, 1, 1, 2, 12, 8, 0, 1, 1, 6, 9, 52, 10, 0, 1, 1, 4, 27, 32, 240, 54, 0, 1, 1, 2, 18, 156, 180, 1188, -42, 0, 1, 1, 2, 15, 100, 1110, 954, 6804, 944, 0, 1, 1, 8, 9, 80, 650, 8322, 6524, 38960, -5112, 0, 1, 1, 6, 48, 56, 590, 4908, 70098, 45016, 253296, 47160, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below.
The list of functions f_1, f_2, ... begins:
| f_k : m : function (tree) : representation(s) : sequence |
+-----+---+------------------+--------------------------+----------+
| f_1 | 1 | x -> x | x | A019590 |
| f_2 | 2 | x -> x^x | x^x | A005727 |
| f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 |
| f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 |
| f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 |
| f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 |
| f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 |
| f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 |

Examples

			Square array A(n,k) begins:
  1,   1,    1,    1,     1,     1,     1,     1, ...
  1,   1,    1,    1,     1,     1,     1,     1, ...
  0,   2,    4,    2,     6,     4,     2,     2, ...
  0,   3,   12,    9,    27,    18,    15,     9, ...
  0,   8,   52,   32,   156,   100,    80,    56, ...
  0,  10,  240,  180,  1110,   650,   590,   360, ...
  0,  54, 1188,  954,  8322,  4908,  5034,  2934, ...
  0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..12);
  • Mathematica
    T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]];
    g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]];
    f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]];
    A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}];
    Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 08 2019, after Alois P. Heinz *)

A322008 1/(1 - Integral_{x=0..1} x^(x^n) dx), rounded to the nearest integer.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 123, 146, 171, 198, 227, 258, 291, 326, 364, 403, 444, 487, 532, 579, 628, 679, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1230, 1301, 1374, 1449, 1526, 1605, 1686, 1769, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506, 2608
Offset: 0

Views

Author

M. F. Hasler, Mar 01 2019

Keywords

Comments

Linked to the problem of sorting parenthesized expressions (x^x....^x) (cf. A000081 and A222379, A222380) according to the value of their integral from 0 to 1: This value is maximal, for a given number n of x's, for F[n](x) := (...(x^x)^x....)^x = x^(x^(n-1)), which converges pointwise to x^0 = x for all x < 1, as n -> oo. The corresponding integrals therefore tend to 1 as n -> oo. This sequence is a convenient measure of the distance of these integrals from 1.
See A322009 for the minimal values of such integrals.

Examples

			For n=0, Integral_{x=0..1} x^(x^0) dx = Integral_{x=0..1} x^1 dx = 1/2, so a(0) = 1/(1 - 1/2) = 1 / 0.5 = 2.
For n=1, Integral_{x=0..1} x^(x^1) dx = Integral_{x=0..1} x^x dx = A083648 = 0.78343..., so a(1) = round( 1 / (1 - 0.78343...)) = round( 1 / 0.21656...) = 5.
		

Crossrefs

Programs

  • Maple
    a:= n-> round(evalf(1/(1-(int(x^(x^n), x=0..1))))):
    seq(a(n), n=0..50);  # Alois P. Heinz, Mar 01 2019
  • Mathematica
    f[n_] := Round[1/(1 - NIntegrate[x^(x^n), {x, 0, 1}])]; Array[f, 51, 0] (* Robert G. Wilson v, Mar 01 2019 *)
  • PARI
    apply( A322008(n)=1\/intnum(x=0,1,1-x^x^n), [0..50])

Formula

Conjectures from Colin Barker, Mar 07 2019: (Start)
G.f.: (2 + x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^9 + x^10 - x^11) / ((1 - x)^3*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-8) - 2*a(n-9) + a(n-10) for n>11.
(End)
Showing 1-2 of 2 results.