A322044 Triangle read by rows: numerators of coefficients (highest degree first) of polynomials interpolating Fibonacci numbers.
1, 1, 2, 1, 3, 6, 1, 3, 14, 30, 1, 2, 23, 94, 192, 1, 0, 35, 180, 744, 1560, 1, -3, 55, 255, 1744, 7308, 15120, 1, -7, 91, 245, 3304, 19922, 82284, 171360, 1, -12, 154, 0, 5929, 40572, 255996, 1068240, 2217600, 1, -18, 258, -756, 11361, 64638, 602972, 3746376, 15533568, 32296320
Offset: 0
Examples
Triangle begins: 1; 1, 2; 1, 3, 6; 1, 3, 14, 30; 1, 2, 23, 94, 192; 1, 0, 35, 180, 744, 1560; 1, -3, 55, 255, 1744, 7308, 15120; ...
References
- Brian Hopkins and Aram Tangboonduangjit, Fibonacci-producing rational polynomials, Fib. Q., 56:4 (2018), 303-312.
Links
- Alois P. Heinz, Rows n = 0..140, flattened (first 17 rows from Brian Hopkins)
Crossrefs
Programs
-
Maple
F:= proc(n) option remember; (<<0|1>, <1|1>>^n)[1, 2] end: T:= n-> (p-> seq(coeff(p, x, n-j), j=0..n))(n!*expand(add( F(i+n+2)*binomial(x, i)*binomial(n-x, n-i), i=0..n))): seq(T(n), n=0..10); # Alois P. Heinz, Feb 24 2019
-
Mathematica
F[n_] := F[n] = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]; T[n_] := Function[p, Table[Coefficient[p, x, n - j], {j, 0, n}]][n! * FunctionExpand[Sum[F[i + n + 2] Binomial[x, i] Binomial[n - x, n - i], {i, 0, n}]]]; T /@ Range[0, 10] // Flatten (* Jean-François Alcover, May 29 2020, after Alois P. Heinz *)
Formula
The degree n polynomial is defined to be the interpolating polynomial of (0, F(n+2)), (1, F(n+3)), ..., (n,F(2n+2)) where F(n) is the n-th Fibonacci number. Theorem 2.1 of the paper proves the alternative form Sum_{i=0..n} F(i+n+2) * binomial(x,i) * binomial(n-x,n-i). - Brian Hopkins, Feb 24 2019
Extensions
Edited by Brian Hopkins, Feb 24 2019
Comments