A322051 a(n) is the number of initial terms in the row of length 2^n of A322050 that agree with the limiting sequence A322049.
1, 1, 2, 4, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462
Offset: 0
Keywords
Examples
n i* a(n) first non-matching pair (i* = Index of start in A319018) 0 3 1 5 1 1 5 1 7 5 2 9 2 6 3 3 17 4 8 5 4 33 6 17 15 5 65 11 145 141 6 129 22 73 69 7 257 43 734 726 8 513 86 349 341 9 1025 171 3579 3563 10 2049 342 1696 1680 11 4097 683 17810 17778 12 8193 1366 8394 8362 13 16385 2731 88553 88489 14 32769 5462 41665 41601 ...
Formula
Conjecture: For n >= 5, a(n) = 2*a(n-1)-1 if n is odd, 2*a(n-1) if n is even.
Conjectures from Colin Barker, Dec 29 2018: (Start)
G.f.: (1 - x - x^2 + x^3 - 2*x^4 - x^5 + 2*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)).
a(n) = (2^n + 2) / 3 for n even and n>3.
a(n) = (2^n + 1) / 3 for n odd and n>3.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>6.
(End)
Extensions
Edited by M. F. Hasler, Dec 18 2018
Comments