cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322093 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 26 2018

Keywords

Examples

			Square array begins:
   1, 2,    6,        24,           120,                 720, ...
   0, 2,   30,       864,         39480,             2631600, ...
   0, 2,  174,     41304,      19606320,         16438575600, ...
   0, 2, 1092,   2265024,   11804626080,     131402141197200, ...
   0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
		

Crossrefs

Columns k=3 gives A110706.
Main diagonal gives A321634.
Cf. A322013.

Programs

  • Mathematica
    Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024

Formula

A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.