A322093 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1
Examples
Square array begins: 1, 2, 6, 24, 120, 720, ... 0, 2, 30, 864, 39480, 2631600, ... 0, 2, 174, 41304, 19606320, 16438575600, ... 0, 2, 1092, 2265024, 11804626080, 131402141197200, ... 0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..52, flattened
- Mathematics.StackExchange, Find the number of k 1's, k 2's, ... , k n's - total kn cards, Apr 08 2012.
Crossrefs
Programs
-
Mathematica
Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
-
PARI
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!) T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024
Formula
A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.