cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322115 Triangle read by rows where T(n,k) is the number of unlabeled connected multigraphs with loops with n edges and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 2, 1, 6, 11, 9, 3, 1, 9, 25, 34, 20, 6, 1, 12, 52, 104, 99, 49, 11, 1, 16, 94, 274, 387, 298, 118, 23, 1, 20, 162, 645, 1295, 1428, 881, 300, 47, 1, 25, 263, 1399, 3809, 5803, 5088, 2643, 765, 106, 1, 30, 407, 2823, 10187, 20645, 24606, 17872, 7878, 1998, 235
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Examples

			Triangle begins:
  1
  1   1
  1   2   1
  1   4   4   2
  1   6  11   9   3
  1   9  25  34  20   6
  1  12  52 104  99  49  11
		

Crossrefs

Row sums are A007719. Diagonal k = n-1 is A000055.

Programs

  • PARI
    EulerT(v)={my(p=exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1); Vec(p/x,-#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,x)={sum(i=2, #v, sum(j=1, i-1, my(g=gcd(v[i],v[j])); g*x^(v[i]*v[j]/g))) + sum(i=1, #v, my(t=v[i]); ((t+1)\2)*x^t + if(t%2, 0, x^(t/2)))}
    G(n,m)={my(s=0); forpart(p=n, s+=permcount(p)*EulerT(Vec(edges(p,x) + O(x*x^m), -m))); s/n!}
    R(n)={Mat(apply(p->Col(p+O(y^n), -n), InvEulerMT(vector(n, k, 1 + y*Ser(G(k,n-1), y)))))}
    { my(T=R(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Nov 30 2018

Extensions

Terms a(28) and beyond from Andrew Howroyd, Nov 30 2018