cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322123 Fermat pseudoprimes to base 2 that are tetradecagonal.

Original entry on oeis.org

31609, 60701, 458989, 513629, 679729, 729061, 745889, 1207361, 1994689, 2746589, 4361389, 4974971, 5173601, 5444489, 6749021, 9056501, 12659989, 13295281, 15525241, 15757741, 16070429, 16705021, 20770621, 21400481, 23822329, 23966011, 27492581, 34003061
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A051866.
The corresponding indices of the tetradecagonal numbers are 73, 101, 277, 293, 337, 349, 353, 449, 577, 677, 853, 911, 929, 953, 1061, 1229, 1453, 1489, 1609, 1621, 1637, 1669, 1861, 1889, 1993, 1999, ...

Crossrefs

Programs

  • Mathematica
    tetradec[n_] := n(6n-5); Select[tetradec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
    Select[PolygonalNumber[14,Range[2400]],PowerMod[2,#-1,#]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 11 2018 *)
  • PARI
    isok(n) = ispolygonal(n, 14) && (Mod(2, n)^n==2) && !isprime(n) && (n>1); \\ Michel Marcus, Nov 28 2018