A322144 a(n) = Sum_{i=1..phi(n)-1} (r(i+1)-r(i))^2 where r(1) = 1 < ... < n-1 = r(phi(n)) are the phi(n) integers relatively prime to n.
0, 0, 1, 4, 3, 16, 5, 12, 11, 24, 9, 36, 11, 32, 29, 28, 15, 56, 17, 52, 39, 48, 21, 76, 31, 56, 41, 68, 27, 128, 29, 60, 59, 72, 57, 116, 35, 80, 69, 108, 39, 168, 41, 100, 95, 96, 45, 156, 59, 136, 89, 116, 51, 176, 85, 140, 99, 120, 57, 260, 59, 128, 125, 124, 99
Offset: 1
Keywords
Examples
a(1) and a(2) are 0, since we have an empty sum. For a(3), the integers < 3, coprime to 3, are 1 and 2, so a(3) = (2-1)^2 = 1.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Paul Erdos, Some Unconventional Problems in Number Theory, Mathematics Magazine, Vol. 52, No. 2, Mar., 1979, pp. 67-70. See Problem 12. p. 70.
Crossrefs
Programs
-
Mathematica
a[n_] := Total[Differences[Select[Range[n], GCD[n,#]==1 &]]^2]; Array[a, 50] (* Amiram Eldar, Nov 28 2018 *)
-
PARI
a(n) = {v = select(x->gcd(x,n)==1, vector(n, k, k)); sum(i=1, #v-1, (v[i+1] - v[i])^2);}
-
PARI
a(n) = {my(res = 0, io = 1, in = 2); while(in < n, while(gcd(in, n) > 1, in++); res += (in - io)^2; io = in; in++); res} first(n) = {my(res = vector(n)); for(i = 1, n, c = factorback(factor(i)[, 1]); if(c == i, res[i] = a(i), res[i] = res[c] * (i / c) + 4 * (i / c - 1))); res } \\ David A. Corneth, Nov 28 2018
Formula
a(p) = p-2, for p prime.
a(k^2 * m) = k * a(k * m) + 4 * (k - 1). - David A. Corneth, Nov 28 2018