cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322160 Fermat pseudoprimes to base 2 that are octadecagonal.

Original entry on oeis.org

8481, 14491, 29341, 62745, 196093, 396271, 526593, 2184571, 2513841, 5256091, 7017193, 8137585, 13448593, 15247621, 16053193, 16879501, 18740971, 20494401, 29878381, 33704101, 35703361, 36724591, 41607721, 42709591, 69741001, 70593931, 80927821, 82976181
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A051870.
The corresponding indices of the octadecagonal numbers are 33, 43, 61, 89, 157, 223, 257, 523, 561, 811, 937, 1009, 1297, 1381, 1417, 1453, 1531, ...

Crossrefs

Programs

  • Mathematica
    octadec[n_]:=n(8n-7); Select[octadec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 18) && !isprime(n) && (Mod(2, n)^n==2); \\ Michel Marcus, Nov 29 2018