A322210 G.f.: P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals.
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 10, 7, 5, 7, 12, 18, 18, 12, 7, 11, 19, 34, 38, 34, 19, 11, 15, 30, 56, 74, 74, 56, 30, 15, 22, 45, 94, 133, 158, 133, 94, 45, 22, 30, 67, 146, 233, 297, 297, 233, 146, 67, 30, 42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42, 56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56
Offset: 0
Examples
G.f.: P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 +19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ... such that P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k. SQUARE TABLE. The square table of coefficients T(n,k) of x^n*y^k in P(x,y) begins 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, ... 1, 2, 4, 7, 12, 19, 30, 45, 67, 97, ... 2, 4, 10, 18, 34, 56, 94, 146, 228, 340, ... 3, 7, 18, 38, 74, 133, 233, 385, 623, 977, ... 5, 12, 34, 74, 158, 297, 550, 951, 1614, 2627, ... 7, 19, 56, 133, 297, 602, 1166, 2133, 3775, 6437, ... 11, 30, 94, 233, 550, 1166, 2382, 4551, 8424, 14953, ... 15, 45, 146, 385, 951, 2133, 4551, 9142, 17639, 32680, ... 22, 67, 228, 623, 1614, 3775, 8424, 17639, 35492, 68356, ... 30, 97, 340, 977, 2627, 6437, 14953, 32680, 68356, 136936, ... 42, 139, 506, 1501, 4202, 10692, 25835, 58659, 127443, 264747, ... 56, 195, 730, 2255, 6531, 17290, 43313, 102149, 229998, 495195, ... ... TRIANGLE. Alternatively, this sequence may be written as a triangle, starting as 1; 1, 1; 2, 2, 2; 3, 4, 4, 3; 5, 7, 10, 7, 5; 7, 12, 18, 18, 12, 7; 11, 19, 34, 38, 34, 19, 11; 15, 30, 56, 74, 74, 56, 30, 15; 22, 45, 94, 133, 158, 133, 94, 45, 22; 30, 67, 146, 233, 297, 297, 233, 146, 67, 30; 42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42; 56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56; 77, 195, 506, 977, 1614, 2133, 2382, 2133, 1614, 977, 506, 195, 77; ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200 (first 61 antidiagonals from Paul D. Hanna)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (x+1)^n, b(n, i-1) +(x^i+1)*b(n-i, min(n-i, i)))) end: T:= (n, k)-> coeff(b(n+k$2), x, k): seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 23 2019
-
Mathematica
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + (x^i + 1) b[n - i, Min[n - i, i]]]]; T[n_, k_] := Coefficient[b[n + k, n + k], x, k]; Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
-
PARI
{P = 1/prod(n=1,61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) );} {T(n,k) = polcoeff( polcoeff( P,n,x),k,y)} for(n=0,16, for(k=0,16, print1( T(n,k),", ") );print(""))
Formula
FORMULAS FOR TERMS.
T(n,k) = T(k,n) for n >= 0, k >= 0.
ROW GENERATING FUNCTIONS.
Row 0: 1/( Product_{n>=1} (1 - x^n) ).
Row 1: 1/( (1-x) * Product_{n>=1} (1 - x^n) ).
Row 2: 2/( (1-x) * (1-x^2) * Product_{n>=1} (1 - x^n) ).
Comments