A322235
Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + k*x^2), for n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 3, 2, 6, 11, 24, 23, 24, 11, 6, 24, 50, 131, 160, 215, 160, 131, 50, 24, 120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120, 720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720, 5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040, 40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320, 362880, 1026576, 4438620, 8936288, 21541905, 33149481, 56464695, 68597418, 89489025, 86715299, 89489025, 68597418, 56464695, 33149481, 21541905, 8936288, 4438620, 1026576, 362880
Offset: 0
This irregular triangle formed from coefficients of x^k in Product_{m=1..n} (m + x + m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 1;
2, 3, 5, 3, 2;
6, 11, 24, 23, 24, 11, 6;
24, 50, 131, 160, 215, 160, 131, 50, 24;
120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120;
720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720;
5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040;
40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320; ...
in which the central terms equal A322238.
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322237 in the above triangle
[1, 3, 24, 160, 1890, 19866, 313628, 4521924, 89489025, 1642616195, ...]
may be divided by triangular numbers to obtain A322236:
[1, 1, 4, 16, 126, 946, 11201, 125609, 1988645, 29865749, 592326527, ...].
-
row[n_] := CoefficientList[Product[k+x+k*x^2, {k, 1, n}] + O[x]^(2n+1), x];
Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Dec 26 2018 *)
-
{T(n, k) = polcoeff( prod(m=1, n, m + x + m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
A322226
a(n) = A322227(n) / (n*(n+1)/2), where A322227(n) = [x^(n-1)] Product_{k=1..n} (k + x - k*x^2), for n >= 1.
Original entry on oeis.org
1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, -6611719113, -4120456053, 3331391605595, 7909978546731, -2311176691053557, -10230565685787877, 2114443392338548619, 14290732101459857168, -2468208492961535459212, -23089123066195736850322, 3581650102772343613724618, 43704098963536055443651815, -6326399008631824968253597825, -96742680150222152446019734205
Offset: 1
The irregular triangle A322225 formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, -1;
2, 3, -3, -3, 2;
6, 11, -12, -21, 12, 11, -6;
24, 50, -61, -140, 75, 140, -61, -50, 24;
120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120;
720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720;
5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040; ...
in which the central terms equal A322228.
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322227 in the above triangle
[1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...]
may be divided by triangular numbers to obtain this sequence
[1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...].
-
a[n_] := SeriesCoefficient[Product[k + x - k x^2, {k, 1, n}], {x, 0, n - 1}]/(n (n + 1)/2);
Array[a, 25] (* Jean-François Alcover, Dec 29 2018 *)
-
{A322225(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( A322225(n, k), ", ")); print(""))
/* Print this sequence */
for(n=1, 30, print1( A322225(n, n-1)/(n*(n+1)/2), ", "))
A322891
Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 9, 6, 8, 6, 11, 42, 45, 84, 44, 48, 24, 50, 227, 310, 717, 620, 908, 400, 384, 120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840, 720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080, 5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120, 40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920
Offset: 0
This irregular triangle of coefficients T(n,k) of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080;
5040, 13068, 83692, 163585, 556640, 838554, 1948268, 2254625, 3896536, 3354216, 4453120, 2617360, 2678144, 836352, 645120;
40320, 109584, 763244, 1601460, 5955777, 9882432, 25330938, 33402132, 64599201, 66804264, 101323752, 79059456, 95292432, 51246720, 48847616, 14026752, 10321920; ...
in which the central terms equal A322892:
[1, 1, 9, 45, 717, 6917, 154877, 2254625, 64599201, 1267075953, ...].
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322893 in this triangle,
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...],
may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
-
{T(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
A322227
a(n) = [x^(n-1)] Product_{k=1..n} (k + x - k*x^2), for n >= 1.
Original entry on oeis.org
1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, -1009469538, -515714090814, -374961500823, 349796118587475, 949197425607720, -314320029983283752, -1565276549925545181, 361569820089891813849, 2715239099277372861920, -518323783521922446434520, -5333587428291215212424382, 906157476001402934272328354, 12062331313935951302447900940, -1897919702589547490476079347500, -31441371048822199544956413616625
Offset: 1
The irregular triangle A322225 formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, -1;
2, 3, -3, -3, 2;
6, 11, -12, -21, 12, 11, -6;
24, 50, -61, -140, 75, 140, -61, -50, 24;
120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120;
720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720;
5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040; ...
in which this sequence forms a diagonal.
RELATED SEQUENCES.
Note that the terms in this sequence
[1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...]
may be divided by triangular numbers n*(n+1)/2 to obtain A322226:
[1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...].
-
a[n_] := SeriesCoefficient[Product[k + x - k x^2, {k, 1, n}], {x, 0, n-1}];
Array[a, 25] (* Jean-François Alcover, Dec 29 2018 *)
-
{T(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
/* Print this sequence */
for(n=1, 30, print1( T(n, n-1), ", "))
A322228
a(n) = [x^n] Product_{k=1..n} (k + x - k*x^2), for n >= 0.
Original entry on oeis.org
1, 1, -3, -21, 75, 1475, -5005, -221389, 593523, 57764619, -89101881, -23273632371, 953636541, 13409519997705, 23908442020749, -10469975115603501, -40844292735050541, 10646036726696597027, 66995992524016223543, -13672657170891872702719, -122282221141986787179519, 21647316686778755963070321, 256325163531592225309743129, -41426918732532942751217361155, -620418821801458605268716606275, 94275566307675915918535250768725
Offset: 0
The irregular triangle A322225 formed from coefficients of x^k in Product_{m=1..n} (m + x - m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, -1;
2, 3, -3, -3, 2;
6, 11, -12, -21, 12, 11, -6;
24, 50, -61, -140, 75, 140, -61, -50, 24;
120, 274, -375, -1011, 540, 1475, -540, -1011, 375, 274, -120;
720, 1764, -2696, -8085, 4479, 15456, -5005, -15456, 4479, 8085, -2696, -1764, 720;
5040, 13068, -22148, -71639, 42140, 169266, -50932, -221389, 50932, 169266, -42140, -71639, 22148, 13068, -5040; ...
in which the central terms equal this sequence.
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322227 in the above triangle
[1, 3, -12, -140, 540, 15456, -50932, -3176172, 7343325, 1053842295, ...]
may be divided by triangular numbers to obtain A322226:
[1, 1, -2, -14, 36, 736, -1819, -88227, 163185, 19160769, -15294993, ...].
-
a[n_] := SeriesCoefficient[Product[k + x - k x^2, {k, 1, n}], {x, 0, n}];
Array[a, 26, 0] (* Jean-François Alcover, Dec 29 2018 *)
-
{T(n, k) = polcoeff( prod(m=1, n, m + x - m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))
/* Print this sequence */
for(n=0, 30, print1( T(n, n), ", "))
Showing 1-5 of 5 results.
Comments