A322239 a(n) = [x^n*y^n] 1/(1 - x - y - x^2 + x*y - y^2).
1, 1, 9, 35, 199, 1005, 5475, 29469, 161685, 889759, 4932641, 27453471, 153432241, 860203135, 4836370101, 27257082723, 153943314903, 871064225325, 4936953721755, 28022734759125, 159272314734843, 906343638290133, 5163219745287591, 29442990216677985, 168050775902585751, 959985125666243145, 5488145767630988595, 31397773111113948245, 179747041781229841375
Offset: 0
Keywords
Examples
Triangle A123603 of coefficients of x^(n-k)*y^k in 1/(1 - x - y - x^2 + x*y - y^2), for n >= 0 and k = 0..n, begins 1; 1, 1; 2, 1, 2; 3, 3, 3, 3; 5, 5, 9, 5, 5; 8, 10, 17, 17, 10, 8; 13, 18, 36, 35, 36, 18, 13; 21, 33, 69, 81, 81, 69, 33, 21; 34, 59, 133, 167, 199, 167, 133, 59, 34; 55, 105, 249, 345, 435, 435, 345, 249, 105, 55; 89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ... in which the central terms form this sequence.
Programs
-
PARI
{a(n) = polcoeff( polcoeff( 1/(1 - x - y - x^2 + x*y - y^2 +x*O(x^n) +y*O(y^n)),n,x),n,y)} for(n=0,30, print1(a(n),", "))
Comments