cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A322262 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 6).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 14, 98, 546, 2562, 10626, 41118, 174174, 1093092, 10005996, 98041944, 889104216, 7315812504, 55893493656, 421564046904, 3519008733240, 36011379484080, 435775334314320, 5538098453968080, 68428271204813520, 805379194188288720
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2018

Keywords

Examples

			For n=6 the a(6)=2 permutations are 654321 and 123456.
		

Crossrefs

Cf. A000142, A322251 (mod 3), A317111 (mod 4), A322276 (mod 5).

Programs

  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 5, (-x)^k/k!)))

Formula

E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5!).

A322276 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 5).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 12, 72, 352, 1472, 5756, 26336, 180116, 1577006, 13720566, 109776526, 829240726, 6488348726, 59134377126, 640605185526, 7502207070150, 87309498759810, 989782736128170, 11277397727184650, 136523328121058170, 1817775858886701082
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2018

Keywords

Crossrefs

A322297 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 7).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 16, 128, 800, 4160, 18944, 78080, 301160, 1208066, 6753606, 60823622, 648980646, 6581663766, 60475366230, 505780634070, 3921237755958, 29226687666930, 227116001463258, 2092153010685722, 24250743543656922, 322040690042341562
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2018

Keywords

Crossrefs

A322298 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 9).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 20, 200, 1520, 9440, 50624, 242816, 1066496, 4361216, 16856556, 64202712, 288983580, 2160645840, 24525417780, 294825080160, 3270522114228, 32898687457422, 302696887652022, 2577419367939422, 20537905525582022, 155236628840778062
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2018

Keywords

Crossrefs

A322282 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 18, 162, 1122, 6402, 31746, 141570, 580866, 2241096, 8693256, 43232904, 362491272, 4067218584, 45304757784, 459941563224, 4236342378840, 35804034476496, 281634733757520, 2106753678778320, 15739783039815120
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2018

Keywords

Crossrefs

Cf. A000142, A322251 (mod 3), A317111 (mod 4), A322276 (mod 5), A322262 (mod 6), A322297 (mod 7), A322298 (mod 9), A322283 (mod 10).

Programs

  • Mathematica
    m = 28; CoefficientList[1/Normal[Exp[-x]+O[x]^8]+O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Feb 24 2019 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 7, (-x)^k/k!)))

Formula

E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - x^7/7!).

A322283 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 22, 242, 2002, 13442, 77506, 397826, 1862146, 8085506, 32978946, 127758774, 482490294, 2015041314, 13111486674, 144226353414, 1835958708870, 22030803357420, 240151251989220, 2389590181956120, 21944411982069720, 187919216043135720
Offset: 0

Views

Author

Seiichi Manyama, Dec 02 2018

Keywords

Crossrefs

Cf. A000142, A322251 (mod 3), A317111 (mod 4), A322276 (mod 5), A322262 (mod 6), A322297 (mod 7), A322282 (mod 8), A322298 (mod 9).

Programs

  • Mathematica
    m = 31; CoefficientList[1/Normal[Exp[-x]+O[x]^10]+O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, Feb 24 2019 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/sum(k=0, 9, (-x)^k/k!)))

Formula

E.g.f.: 1/(1 - x + x^2/2! - x^3/3! + x^4/4! - x^5/5! + x^6/6! - x^7/7! + x^8/8! - x^9/9!).
Showing 1-6 of 6 results.