cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322274 Smallest multiplication factors f, prime or 1, for all b (mod 9240), coprime to 9240 (= 4*11#), so that b*f is a square mod 8, mod 3, mod 5, mod 7, and mod 11.

Original entry on oeis.org

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 113, 19, 29, 79, 157, 67, 167, 1, 173, 179, 181, 71, 193, 197, 31, 211, 389, 103, 83, 181, 233, 239, 241, 463, 59, 257, 263, 269, 271, 277, 281, 283, 1, 173, 131, 283, 311, 97, 53, 443, 331, 193, 107, 61, 257, 239, 1, 103, 277
Offset: 1

Views

Author

Hans Ruegg, Dec 01 2018

Keywords

Comments

See sequence A322269 for further explanations. This sequence is related to A322269(5).
The sequence is periodic, repeating itself after phi(9240) terms. Its largest term is 1873, which is A322269(5). In order to satisfy the conditions, both f and b must be coprime to 9240. Otherwise, the product would be zero mod a prime <= 11.
The b(n) corresponding to each a(n) is A008365(n).
The first 28 entries are trivial: f=b, and then the product b*f naturally is a square modulo everything.

Examples

			The 30th number coprime to 9240 is 139. a(30) is 19, because 19 is the smallest prime by which we can multiply 139, so that the product (139*19 = 2641) is a square mod 8, and modulo all primes up to 11.
		

Crossrefs

Programs

  • PARI
    QresCode(n, nPrimes) = {
      code = bitand(n,7)>>1;
      for (j=2, nPrimes,
        x = Mod(n,prime(j));
        if (issquare(x), code += (1<A322271, sequence(3) returns A322272, ... sequence(6) returns A322275.