A322277 Permanent of an n X n square matrix M(n) formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern.
1, 11, 490, 60916, 15745548, 7477647372, 5799397213200, 6925325038489152, 11958227405868674880, 28853103567727115409600, 93561657023119005869616000, 398720531811315564754326938880, 2174628314166392755825875267321600, 14941853448103858870808931238617312000
Offset: 1
Keywords
Examples
For n = 1 the matrix M(1) is 1 with permanent a(1) = 1. For n = 2 the matrix M(2) is 1, 2 4, 3 with permanent a(2) = 11. For n = 3 the matrix M(3) is 1, 2, 3 6, 5, 4 7, 8, 9 with permanent a(3) = 490.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..35
Crossrefs
Programs
-
Maple
with(LinearAlgebra): a := n -> Permanent(Matrix(n, (i, j) -> 1-j+i*n+(-1+2*j-n)*modp(i,2))): seq(a(n), n = 1 .. 20);
-
Mathematica
M[i_, j_, n_] := 1 - j + i n + (-1 + 2 j - n) Mod[i, 2]; a[n_] := Permanent[Table[M[i, j, n], {i, n}, {j, n}]]; Array[a, 20]
-
PARI
a(n) = matpermanent(matrix(n, n, i, j, if (i % 2, j + n*(i-1), n*i - j + 1))); vector(20, n, a(n))
Comments