A322278 Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.
1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1
Examples
Triangle begins: 1; 0, 1; 0, 3, 4; 0, 19, 84, 38; 0, 195, 2470, 3140, 728; 0, 3031, 108390, 307390, 186360, 26704; 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
PARI
M(n, K=n)={ my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n)); my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n)); my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k)))))); Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!)); } my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))
Formula
T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*A322279(n,j).
Comments