A375659 For 0<=k<=n, T(n,k) = the number of Dyck-type lattice paths of length n, starting at the point (0,k), triangle T read by rows.
1, 1, 2, 2, 3, 4, 3, 6, 7, 8, 6, 10, 14, 15, 16, 10, 20, 25, 30, 31, 32, 20, 35, 50, 56, 62, 63, 64, 35, 70, 91, 112, 119, 126, 127, 128, 70, 126, 182, 210, 238, 246, 254, 255, 256, 126, 252, 336, 420, 456, 492, 501, 510, 511, 512, 252, 462, 672, 792, 912, 957, 1002, 1012, 1022, 1023, 1024
Offset: 0
Examples
n | k=0 1 2 3 4 5 6 7 ---+--------------------------------------- 0 | 1 1 | 1 2 2 | 2 3 4 3 | 3 6 7 8 4 | 6 10 14 15 16 5 | 10 20 25 30 31 32 6 | 20 35 50 56 62 63 64 7 | 35 70 92 112 119 126 127 128
Links
- John Tyler Rascoe, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
a:=(n,k)->sum(binomial(n, floor((1/2)*(n-k))+i), i = 0..k): seq(seq(a(n, k), k = 0..n), n = 0..11);
-
Python
from math import comb def A375659(n,k): return sum(comb(n,i+(n-k)//2) for i in range(k+1)) # John Tyler Rascoe, Sep 04 2024
Formula
T(n,k) = Sum_{i = 0..k} binomial(n, floor((n-k)/2)+i).
T(n,k) = T(n-1,k-1)+T(n-1,k+1), for all n>=2 and 1<=k<=n-2.
Comments