A322327 a(n) = A005361(n) * A034444(n).
1, 2, 2, 4, 2, 4, 2, 6, 4, 4, 2, 8, 2, 4, 4, 8, 2, 8, 2, 8, 4, 4, 2, 12, 4, 4, 6, 8, 2, 8, 2, 10, 4, 4, 4, 16, 2, 4, 4, 12, 2, 8, 2, 8, 8, 4, 2, 16, 4, 8, 4, 8, 2, 12, 4, 12, 4, 4, 2, 16, 2, 4, 8, 12, 4, 8, 2, 8, 4, 8, 2, 24, 2, 4, 8, 8, 4, 8, 2, 16, 8, 4, 2, 16, 4, 4, 4, 12, 2, 16, 4, 8, 4, 4, 4, 20, 2, 8, 8, 16
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
a[n_] := If[n==1, 1, Module[{f = FactorInteger[n]}, 2^Length[f] * Times@@f[[;;,2]]]]; Array[a, 100] (* Amiram Eldar, Dec 03 2018 *)
-
PARI
a(n) = my(f=factor(n)); vecprod(f[,2])*2^omega(n); \\ Michel Marcus, Dec 04 2018
-
PARI
A322327(n) = factorback(apply(e -> e+e, factor(n)[, 2])); \\ Antti Karttunen, Jul 18 2022
-
Python
from math import prod from sympy import factorint def A322327(n): return prod(e<<1 for e in factorint(n).values()) # Chai Wah Wu, Dec 26 2022
Formula
Multiplicative with a(p^e) = 2*e for prime p and e > 0.
Dirichlet g. f.: (zeta(s))^2 * zeta(2*s) / zeta(4*s).
Sum_{k=1..n} a(k) ~ 15*(log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 - 360*zeta'(4)/Pi^4) * n / Pi^2 + 6*zeta(1/2)^2 * sqrt(n) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
Extensions
Data section extended up to a(100) by Antti Karttunen, Jul 18 2022
Comments